Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Solution of Navier-Stokes Equations Using FEM with Stabilizing Subgrid
Date
2009-07-03
Author
Tezer, Münevver
Aydın Bayram, Selma
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
273
views
0
downloads
Cite This
The Galerkin finite element method (FEM) is used for solving the incompressible Navier Stokes equations in 2D. Regular triangular elements are used to discretize the domain and the finite-dimensional spaces employed consist of piece wise continuous linear interpolants enriched with the residual-free bubble (RFB) functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described in our previous paper [Int. J. Numer. Methods Fluids 58, 551-572 (2007)]. The results for backward facing step flow and flow through 2D channel with an obstruction on the lower wall show that the proper choice of the subgrid node is crucial to get stable and accurate solutions consistent with the physical configuration of the problems at a cheap computational cost.
Subject Keywords
Reynolds number
,
Element method
,
Stokes equation
,
Reynolds number increase
,
Pressure contour
URI
https://hdl.handle.net/11511/49146
DOI
https://doi.org/10.1007/978-3-642-11795-4_94
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Solution of the nonlinear diffusion equation using the dual reciprocity boundary element method and the relaxation type time integration scheme
Meral, G (2005-03-18)
We present the combined application of the dual reciprocity boundary element method (DRBEM) and the finite difference method (FDM) with a relaxation parameter to the nonlinear diffusion equation: partial derivative u/partial derivative t = V del(2)u + p(u) at where p(u) is the nonlinear term. The DRBEM is employed to discretize the spatial partial derivatives by using the fundamental solution of the Laplace operator, keeping the time derivative and the nonlinearity as the nonhomogeneous terms in the equatio...
Generalized Hybrid Surface Integral Equations for Finite Periodic Perfectly Conducting Objects
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-01-01)
Hybrid formulations that are based on simultaneous applications of diversely weighted electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) on periodic but finite structures involving perfectly conducting surfaces are presented. Formulations are particularly designed for closed conductors by considering the unit cells of periodic structures as sample problems for optimizing EFIE and MFIE weights in selected regions. Three-region hybrid formulations, which are designed by geneti...
Solution of magnetohydrodynamic flow in a rectangular duct by differential quadrature method
Tezer, Münevver (2004-05-01)
The polynomial based differential quadrature and the Fourier expansion based differential quadrature method are applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of a transverse external oblique magnetic field. Numerical solution for velocity and induced magnetic field is obtained for the steady-state, fully developed, incompressible flow of a conducting fluid inside of the duct. Equal and unequal grid point discretizations are both used in the domain and it is ...
SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS PROBLEMS USING AN ITERATIVE INNER-OUTER SCHEME WITH ORDINARY AND APPROXIMATE MULTILEVEL FAST MULTIPOLE ALGORITHMS
Ergül, Özgür Salih; Gurel, L. (2010-01-01)
We present an iterative inner-outer scheme for the efficient solution of large-scale electromagnetics problems involving perfectly-conducting objects formulated with surface integral equations. Problems are solved by employing the multilevel fast multipole algorithm (MLFMA) on parallel computer systems. In order to construct a robust preconditioner, we develop an approximate MLFMA (AMLFMA) by systematically increasing the efficiency of the ordinary MLFMA. Using a flexible outer solver, iterative MLFMA solut...
Solution to transient Navier-Stokes equations by the coupling of differential quadrature time integration scheme with dual reciprocity boundary element method
Bozkaya, Canan; Tezer, Münevver (Wiley, 2009-01-20)
The two-dimensional time-dependent Navier-Stokes equations in terms of the vorticity and the stream function are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in space with the differential quadrature method (DQM) in time. In DRBEM application, the convective and the time derivative terms in the vorticity transport equation are considered as the nonhomogeneity in the equation and are approximated by radial basis functions. The solution to the Poisson equati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tezer and S. Aydın Bayram, “Solution of Navier-Stokes Equations Using FEM with Stabilizing Subgrid,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49146.