Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing

Yesil, Sertan
Winkelrnann, Charles
Bayram, Göknur
La Saponara, Valeria
This paper documents the mechanical and electrical performance of self-sensing conductive polymer composites prepared with a low-cost technique and small hardware, able to considerably improve the dispersion and the surface adhesion of multi-walled carbon nanotubes (CNTs) in epoxy resin with respect to amine-modified CNTs and as-received CNTs. Surface treatment of the CNTs is performed using hexamethylene diamine, or a mix of sulfuric and nitric acid, and one of two surfactants (for the diamine treatment only): Triton X-100 ( non-ionic) and cetyl pyridinium chloride, CPC (cationic). The effects of the treatments are shown in terms of the changes in mechanical properties and interpreted with the use of SEM, FTIR and XRD analyses. Moreover, a key and novel aspect of this work is that the improvements in dispersion and surface adhesion cause improvements of damage sensing capability under fatigue and impact. This was demonstrated on fiberglass-reinforced panels prepared with treated CNT/epoxy through hand lay-up. This study reveals that the diamine/CPC- based configuration is superior, due to improved mechanical performance, higher resistance to fatigue and impact damage (over 30 J) and increased damage sensitivity.


Titanium-magnesium based composites: Mechanical properties and in-vitro corrosion response in Ringer's solution
ESEN, ZİYA; Dikici, Burak; Duygulu, Ozgur; Dericioğlu, Arcan Fehmi (Elsevier BV, 2013-06-20)
Ti-Mg composite rods exhibiting both bioinert and biodegradable characteristics have been manufactured by hot rotary swaging from elemental powders of titanium and magnesium. As a result of processing, spherical magnesium powders elongated in the direction of deformation and the dendritic structure in starting magnesium powders transformed into highly equiaxed grains. Magnesium particles in the outer layer of the composites were decorated by thin layer of MgO while the interior parts were free from oxides. ...
Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Mechanical behaviour of Al2O3-ZrO2 minicomposite reinforced glass matrix optomechanical composite
Dericioğlu, Arcan Fehmi (Informa UK Limited, 2003-08-01)
To understand the effect of a 'mesh-structured reinforcement' on the optical and mechanical properties of optomechanical composites, a unidirectional Al2O3 fibre-ZrO2 matrix minicomposite reinforced glass matrix optomechanical composite has been fabricated. By regular alignment of the minicomposites in the glass matrix as part of the 'mesh structure' a high degree of optical transparency is obtained in the composite; this transparency is proportional to its 'optical window' regions. The mesh structured rein...
Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction
Çetin, Asude; Önal, Ahmet Muhtar; Nalbant Esentürk, Emren (Cambridge University Press (CUP), 2019-09-30)
The development of stable and effective earth-abundant metal oxide electrocatalysts is very crucial to improve competence of water electrolysis. In this study, iron manganite (FeMnO3) nanomaterials were synthesized as an affordable electrocatalyst for water oxidation reactions. The structural and chemical properties of FeMnO3 nanomaterials were studied by transmission electron microscopy, scanning electron microscopy, energydispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, inductively c...
Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process
Ozturk, Fahrettin; Ece, Remzi Ecmel; Polat, Naki; Koksal, Arif; Evis, Zafer; Polat, Aytekin (Elsevier BV, 2013-08-20)
In this study, effect of temperature in the electrical resistance heating process on mechanical properties and microstructures of commercially pure titanium grade 2 (CP2) and Ti-6Al-4V (T64) alloy sheets was investigated. Sheets were successfully heated by the electric resistance heating process, and their mechanical properties and microstructures were evaluated. Ductilities of both materials were increased significantly after 400 degrees C. Results indicate that no significant change was observed in grain ...
Citation Formats
S. Yesil, C. Winkelrnann, G. Bayram, and V. La Saponara, “Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing,” MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, pp. 7340–7352, 2010, Accessed: 00, 2020. [Online]. Available: