Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System
Date
2019-05-16
Author
Nayir, Nadire
van Duin, Adri C. T.
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Cite This
We redeveloped the ReaxFF force field parameters for Si/O/H interactions that enable molecular dynamics (MD) simulations of Si/SiO2 interfaces and O diffusion in bulk Si at high temperatures, in particular with respect to point defect stability and migration. Our calculations show that the new force field framework (ReaxFF(present)), which was guided by the extensive quantum mechanical-based training set, describes correctly the underlying mechanism of the O-migration in Si network, namely, the diffusion of O in bulk Si occurs by jumping between the neighboring bond-centered sites along a path in the (110) plane, and during the jumping, O goes through the asymmetric transition state at a saddle point. Additionally, the ReaxFF(present) predicts the diffusion barrier of O-interstitial in the bulk Si of 64.8 kcal/mol, showing a good agreement with the experimental and density functional theory values in the literature. The new force field description was further applied to MD simulations addressing O diffusion in bulk Si at different target temperatures ranging between 800 and 2400 K. According to our results, 0 diffusion initiates at the temperatures over 1400 K, and the atom diffuses only between the bond-centered sites even at high temperatures. In addition, the diffusion coefficient of O in Si matrix as a function of temperature is in overall good agreement with experimental results. As a further step of the force field validation, we also prepared amorphous SiO2 (a-SiO2) with a mass density of 2.21 gr/cm(3), which excellently agrees with the experimental value of 2.20 gr/cm(3), to model a-SiO2/Si system. After annealing the a-SiO2/Si system at high temperatures until below the computed melting point of bulk Si, the results show that ReaxFF(present) successfully reproduces the experimentally and theoretically defined diffusion mechanism in the system and succeeded in overcoming the diffusion problem observed with Reax(FFsiOH)(2010), which results in O diffusion in the Si substrate even at the low temperature such as 300 K.
Subject Keywords
Physical and Theoretical Chemistry
URI
https://hdl.handle.net/11511/50478
Journal
JOURNAL OF PHYSICAL CHEMISTRY A
DOI
https://doi.org/10.1021/acs.jpca.9b01481
Collections
Department of Physics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Nayir, A. C. T. van Duin, and Ş. Erkoç, “Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System,”
JOURNAL OF PHYSICAL CHEMISTRY A
, vol. 123, no. 19, pp. 4303–4313, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/50478.