Oscillation of nonlinear elliptic inequalities with p(x)-Laplacian

Zafer, Ağacık
Sufficient conditions are obtained for the oscillation of solutions of half-linear and super-half-linear elliptic inequalities with p(x)-Laplacian. The results obtained are new even for the one-dimensional case.


Oscillation criteria for even order neutral differential equations
Zafer, Ağacık (1998-05-01)
Oscillation criteria are given for even order neutral type differential equations of the following form
Impulsive Boundary Value Problems for Planar Hamiltonian Systems
Kayar, Zeynep; Zafer, Ağacık (2013-01-01)
We give an existence and uniqueness theorem for solutions of inhomogeneous impulsive boundary value problem (BVP) for planar Hamiltonian systems. Green's function that is needed for representing the solutions is obtained and its properties are listed. The uniqueness of solutions is connected to a Lyapunov type inequality for the corresponding homogeneous BVP.
Almost periodic solutions of the linear differential equation with piecewise constant argument
Akhmet, Marat (2009-10-01)
The paper is concerned with the existence and stability of almost periodic solutions of linear systems with piecewise constant argument where t∈R, x ∈ Rn [·] is the greatest integer function. The Wexler inequality [1]-[4] for the Cauchy's matrix is used. The results can be easily extended for the quasilinear case. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Copyright © 2009 Watam Press.
Exact Solutions of Effective-Mass Dirac-Pauli Equation with an Electromagnetic Field
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2017-01-01)
The exact bound state solutions of the Dirac-Pauli equation are studied for an appropriate position-dependent mass function by using the Nikiforov-Uvarov method. For a central electric field having a shifted inverse linear term, all two kinds of solutions for bound states are obtained in closed forms.
Oscillation of third-order nonlinear delay difference equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydin; Zafer, Ağacık (2012-01-01)
Third-order nonlinear difference equations of the form Delta(c(n)Delta(d(n)Delta x(n))) p(n)Delta x(n+1) + q(n)f (x(n-sigma)) = n >= n(0) are considered. Here, {c(n)}, {d(n)}, {p(n)} and {q(n)} are sequences of positive real numbers for n(0) is an element of N, f is a continuous function such that f(u)/u >= K > 0 for u not equal 0. By means of a Riccati transformation technique we obtain some new oscillation criteria. Examples are given to illustrate the importance of the results.
Citation Formats
Y. ŞAHİNER and A. Zafer, “Oscillation of nonlinear elliptic inequalities with p(x)-Laplacian,” COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, pp. 537–546, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/50606.