SECOND ORDER OSCILLATION OF MIXED NONLINEAR DYNAMIC EQUATIONS WITH SEVERAL POSITIVE AND NEGATIVE COEFFICIENTS

2011-09-01
ÖZBEKLER, ABDULLAH
Zafer, Ağacık
New oscillation criteria are obtained for superlinear and sublinear forced dynamic equations having positive and negative coefficients by means of nonprincipal solutions.
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS

Suggestions

Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2012-03-01)
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
SECOND ORDER NUMERICAL METHODS FOR NAVIER-STOKES AND DARCY-BRINKMAN EQUATIONS
DEMİR, Medine; Kaya Merdan, Songül; Bayram Çıbık, Aytekin; Department of Mathematics (2022-6-28)
In this thesis, second-order, efficient and reliable numerical stabilization methods are considered for approximating solutions to the incompressible, viscous fluid flow driven by the Navier-Stokes equations and for the Darcy-Brinkman equations driven by double-diffusive convection. The standard Galerkin finite element method remains insufficient for accurately solving these complex nonlinear equations that creates some problems such as numerical instabilities and unphysical oscillations in the solution. A ...
Oscillatory behavior of integro-dynamic and integral equations on time scales
Grace, S. R.; Zafer, Ağacık (2014-02-01)
By making use of asymptotic properties of nonoscillatory solutions, the oscillation behavior of solutions for the integro-dynamic equation
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential
IKHDAİR, SAMEER; Sever, Ramazan (2008-03-01)
The Klein-Gordon equation in D-dimensions for a recently proposed ring-shaped Kratzer potential is solved analytically by means of the conventional Nikiforov-Uvarov method. The exact energy bound states and the corresponding wave functions of the Klein-Gordon are obtained in the presence of the non-central equal scalar and vector potentials. The results obtained in this work are more general and can be reduced to the standard forms in three dimensions given by other works.
Citation Formats
A. ÖZBEKLER and A. Zafer, “SECOND ORDER OSCILLATION OF MIXED NONLINEAR DYNAMIC EQUATIONS WITH SEVERAL POSITIVE AND NEGATIVE COEFFICIENTS,” DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, pp. 1167–1175, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53596.