A probabilistic approach to microRNA-target binding

2011-09-16
OĞUL, HASAN
Umu, Sinan U.
Tuncel, Y. Yener
Akkaya, Mahinur
Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interactions of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set-up a probabilistic model to explain the binding preferences between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA-mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA-target mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms two recent methods based on thermodynamic stability and sequence complementarity. The experiments can also unveil the effects of base pairing types and non-seed region in duplex formation.
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Suggestions

A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS
OĞUL, HASAN; Umu, Sinan U.; Tuncel, Y. Yener; Akkaya, Mahinur (2011-10-26)
Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interaction of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set up a probabilistic model to explain the binding between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and de...
The effect of cysteine-43 mutation on thermostability and kinetic properties of citrate synthase from Thermoplasma acidophilum
Kocabıyık, Semra; Russel, RJM; Danson, MJ; Hough, DW (Elsevier BV, 1996-07-05)
In this study, we have substituted serine-43 by cysteine in the recombinant citrate synthase from a moderately thermophilic Archaeon Thermoplasma acidophilum, for site-specific attachment of labels and have investigated the effects of this mutation on the biochemical properties and thermal stability of the enzyme. Both wild-type and the mutant enzymes were purified to homogenity using affinity chromatography on Matrex Gel Red A. The mutant Thermoplasma citrate synthase is very similar to wild-type citrate s...
Using artificially generated spectral data to improve protein secondary structure prediction from Fourier transform infrared spectra of proteins
Severcan, M; Haris, PI; Severcan, Feride (Elsevier BV, 2004-09-15)
Secondary structures of proteins have been predicted using neural networks from their Fourier transform infrared spectra. To improve the generalization ability of the neural networks, the training data set has been artificially increased by linear interpolation. The leave-one-out approach has been used to demonstrate the applicability of the method. Bayesian regularization has been used to train the neural networks and the predictions have been further improved by the maximum-likelihood estimation method. T...
Discovering functional interaction patterns in protein-protein interaction networks
Turanalp, Mehmet E.; Can, Tolga (Springer Science and Business Media LLC, 2008-06-11)
Background: In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution...
Structural Basis for EPC1-Mediated Recruitment of MBTD1 into the NuA4/TIP60 Acetyltransferase Complex
Zhang, Heng; Devoucoux, Maëva; Song, Xiaosheng; Li, Li; Ayaz, Gamze; Cheng, Harry; Tempel, Wolfram; Dong, Cheng; Loppnau, Peter; Côté, Jacques; Min, Jinrong (Elsevier BV, 2020-3)
MBTD1, a H4K20me reader, has recently been identified as a component of the NuA4/TIP60 acetyltransferase complex, regulating gene expression and DNA repair. NuA4/TIP60 inhibits 53BP1 binding to chromatin through recognition of the H4K20me mark by MBTD1 and acetylation of H2AK15, blocking the ubiquitination mark required for 53BP1 localization at DNA breaks. The NuA4/TIP60 non-catalytic subunit EPC1 enlists MBTD1 into the complex, but the detailed molecular mechanism remains incompletely explored. Here, we p...
Citation Formats
H. OĞUL, S. U. Umu, Y. Y. Tuncel, and M. Akkaya, “A probabilistic approach to microRNA-target binding,” BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, pp. 111–115, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51128.