Constantin’s inequality for nabla and diamond-alpha derivative

2015-5-28
Güvenilir, Ayşe Feyza
Kaymakçalan, Billur
Pelen, Neslihan Nesliye
Calculus for dynamic equations on time scales, which offers a unification of discrete and continuous systems, is a recently developed theory. Our aim is to investigate Constantin's inequality on time scales that is an important tool used in determining some properties of various dynamic equations such as global existence, uniqueness and stability. In this paper, Constantin's inequality is investigated in particular for nabla and diamond-alpha derivatives.
Journal of Inequalities and Applications

Suggestions

A NOVEL PARTITIONING METHOD FOR ACCELERATING THE BLOCK CIMMINO ALGORITHM
Torun, F. Sukru; Manguoğlu, Murat; Aykanat, Cevdet (2018-01-01)
We propose a novel block-row partitioning method in order to improve the convergence rate of the block Cimmino algorithm for solving general sparse linear systems of equations. The convergence rate of the block Cimmino algorithm depends on the orthogonality among the block rows obtained by the partitioning method. The proposed method takes numerical orthogonality among block rows into account by proposing a row inner-product graph model of the coefficient matrix. In the graph partitioning formulation define...
FORCED HARMONIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES USING DESCRIBING FUNCTIONS
TANRIKULU, O; KURAN, B; Özgüven, Hasan Nevzat; IMREGUN, M (1993-07-01)
The dynamic response of multiple-degree-of-freedom nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasilinear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonl...
A NECESSARY AND SUFFICIENT CONDITION FOR OSCILLATION OF SECOND ORDER SUBLINEAR DELAY DYNAMIC EQUATIONS
Mert, RazIye; Zafer, Ağacık (2011-09-01)
Time scale calculus approach allows one to treat the continuous, discrete, as well as more general systems simultaneously. In this article we use this tool to establish a necessary and sufficient condition for the oscillation of a class of second order sublinear delay dynamic equations on time scales. Some well known results in the literature are improved and extended.
Partitioning and Reordering for Spike-Based Distributed-Memory Parallel Gauss--Seidel
Torun, Tugba; Torun, F. Sukru; Manguoğlu, Murat; Aykanat, Cevdet (2022-04-01)
Gauss--Seidel (GS) is a widely used iterative method for solving sparse linear sys-tems of equations and also known to be effective as a smoother in algebraic multigrid methods.Parallelization of GS is a challenging task since solving the sparse lower triangular system in GSconstitutes a sequential bottleneck at each iteration. We propose a distributed-memory parallel GS(dmpGS) by implementing a parallel sparse triangular solver (stSpike) based on the Spike algorithm.stSpike d...
On chaotic synchronization via impulsive control and piecewise constant arguments
Mohamad S, Alwan; Xınzhı, Lıu; Akhmet, Marat (2015-01-01)
This paper is concerned with a system of differential equations with continuous and piecewise constants arguments of a delay type. An application to chaotic systems is presented and the synchronization problem is established, where the output of the sender system, evaluated at the piecewise constant arguments, is transmitted to the receiver system. A global synchronization is achieved via impulsive effects, which are evaluated at the discrete arguments. The methodology of Lyapunov function together with lin...
Citation Formats
A. F. Güvenilir, B. Kaymakçalan, and N. N. Pelen, “Constantin’s inequality for nabla and diamond-alpha derivative,” Journal of Inequalities and Applications, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51151.