FORCED HARMONIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES USING DESCRIBING FUNCTIONS

1993-07-01
TANRIKULU, O
KURAN, B
Özgüven, Hasan Nevzat
IMREGUN, M
The dynamic response of multiple-degree-of-freedom nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasilinear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonlinear algebraic equations and the solution is obtained iteratively. The linear and nonlinear parts of the structure are dealt with separately, the former being represented by the constant linear receptance matrix [alpha], and the latter by the generalized quasilinear matrix [DELTA] which is updated at each iteration. A special technique that reduces the computation time significantly when the nonlinearities are localized is used with success to analyze large structures. The proposed method is fully compatible with standard modal analysis procedures. Several examples dealing with cubic stiffness, piecewise linear stiffness, and coulomb friction type of nonlinearities are presented in the case of a ten-degree-of-freedom structure.
AIAA JOURNAL

Suggestions

Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
On plateaued functions, linear structures and permutation polynomials
Mesnager, Sihem; Kaytancı, Kübra; Özbudak, Ferruh (2019-01-01)
We obtain concrete upper bounds on the algebraic immunity of a class of highly nonlinear plateaued functions without linear structures than the one was given recently in 2017, Cusick. Moreover, we extend Cusick’s class to a much bigger explicit class and we show that our class has better algebraic immunity by an explicit example. We also give a new notion of linear translator, which includes the Frobenius linear translator given in 2018, Cepak, Pasalic and Muratović-Ribić as a special case. We find some app...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Moving mesh discontinuous Galerkin methods for PDEs with traveling waves
UZUNCA, MURAT; Karasözen, Bülent; Kucukseyhan, T. (2017-01-01)
In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the effi...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Citation Formats
O. TANRIKULU, B. KURAN, H. N. Özgüven, and M. IMREGUN, “FORCED HARMONIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES USING DESCRIBING FUNCTIONS,” AIAA JOURNAL, pp. 1313–1320, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34372.