Hide/Show Apps

Theory of exciton annihilation in complexes of a finite number of molecular sites

1990-11
Gülen, Demet
A theory of the kinematics of singlet exciton annihilation in complexes of a finite number of molecular sites is developed. The theory is based on a specific scheme suggested earlier by Gülen, Wittmershaus, and Knox [Biophys J. 49:469–477 (1986)]. It is adequate to address the excitation kinetics and dynamics in such systems, especially under high excitation intensities. A Pauli master equation is formulated and is solved to give explicit expressions for observables such as quantum yield and fluorescence intensity. The excitation intensity dependence of the observables is taken into account by introducing Poisson statistics. Details relevant to its application to the annihilation of excitons in photosynthetic systems and its connection to earlier theories are presented.