Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Fuzzy optimization for portfolio selection based on Embedding Theorem in Fuzzy Normed Linear Spaces
Download
[15811832 - Organizacija] Fuzzy optimization for portfolio selection based on Embedding Theorem in Fuzzy Normed Linear Spaces.pdf
Date
2014-5-1
Author
Solatikia, Farnaz
Kiliç, Erdem
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
8
downloads
Cite This
<jats:title>Abstract</jats:title> <jats:p>Background: This paper generalizes the results of Embedding problem of Fuzzy Number Space and its extension into a Fuzzy Banach Space C(Ω) × C(Ω), where C(Ω) is the set of all real-valued continuous functions on an open set Ω. </jats:p> <jats:p>Objectives: The main idea behind our approach consists of taking advantage of interplays between fuzzy normed spaces and normed spaces in a way to get an equivalent stochastic program. This helps avoiding pitfalls due to severe oversimplification of the reality. </jats:p> <jats:p>Method: The embedding theorem shows that the set of all fuzzy numbers can be embedded into a Fuzzy Banach space. Inspired by this embedding theorem, we propose a solution concept of fuzzy optimization problem which is obtained by applying the embedding function to the original fuzzy optimization problem. </jats:p> <jats:p>Results: The proposed method is used to extend the classical Mean-Variance portfolio selection model into Mean Variance-Skewness model in fuzzy environment under the criteria on short and long term returns, liquidity and dividends. </jats:p> <jats:p>Conclusion: A fuzzy optimization problem can be transformed into a multiobjective optimization problem which can be solved by using interactive fuzzy decision making procedure. Investor preferences determine the optimal multiobjective solution according to alternative scenarios.</jats:p>
Subject Keywords
Embedding problem
,
Fuzzy optimization
,
Fuzzy Banach Space
,
Portfolio selection
URI
https://hdl.handle.net/11511/51456
Journal
Organizacija
DOI
https://doi.org/10.2478/orga-2014-0010
Collections
Graduate School of Applied Mathematics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Solatikia, E. Kiliç, and G. W. Weber, “Fuzzy optimization for portfolio selection based on Embedding Theorem in Fuzzy Normed Linear Spaces,”
Organizacija
, vol. 47, no. 2, pp. 90–97, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51456.