Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code
Download
0354-98361300128G.pdf
Date
2014
Author
Ghafouri, Jafar
Shafee, Sina
Maghbouli, Amin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
168
views
97
downloads
Cite This
<jats:p>Combustion in a large-bore natural gas fuelled diesel engine operating under Homogeneous Charge Compression Ignition mode at various operating conditions is investigated in the present paper. Computational Fluid Dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al. (2000), conducted on the single cylinder Volvo TD100 engine operating at Homogeneous Charge Compression Ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.</jats:p>
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
Computational fluid dynamics
,
Chemistry
,
Equivalence ratio
,
Homogeneous charge
,
Compression ignition
,
Engine speed
URI
https://hdl.handle.net/11511/51462
Journal
Thermal Science
DOI
https://doi.org/10.2298/tsci130204128g
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine
Barzegar, Ramin; Shafee, Sina; Khalilarya, Shahram (National Library of Serbia, 2013)
In the present paper, the combustion process and emission formation in the Lister 8.1 in-direct injection diesel engine have been investigated using a computational fluid dynamics code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately re...
Numerical investigation of cavitating flow in variable area venturi on the basis of experimental data
Gümüşel, Hasan Tolg; Aksel, Mehmet Haluk.; Department of Mechanical Engineering (2019)
Variable area cavitating Venturi is a throttling device that can regulate the flow rate used in liquid and hybrid rocket motors. It has a pintle mechanism which adjusts the flow area by moving back and forth in the direction parallel to the outflow from the Venturi. The flow rate is independent of the downstream pressure due to cavitation. This makes the variable area cavitating Venturi a very critical component for liquid propellant rocket engine because it can create an isolation between the inlet and the...
Experimental investigation of oil accumulation in second land of internal combustion engines
İÇÖZ, TUNÇ; Dursunkaya, Zafer (ASME International, 2005-01-01)
Blowback of engine oil suspended in combustion gases, when the gas flows from the piston second land back into the combustion chamber is believed to contribute to oil consumption and hydrocarbon emissions in internal combustion engines. Oil accumulation in the region between top and second compression rings is a factor that influences this phenomenon. The effects of individual parameters, such as oil film thickness and viscosity, however have still not been understood. The present study was aimed at constru...
Investigation of alternative biomass fuels and Turkish lignites at high heating rate pyrolysis and combustion conditions
Magalhaes, Duarte; Kazanç Özerinç, Feyza; Yozgatlıgil, Ahmet; Department of Mechanical Engineering (2021-2-12)
The objective of this work was to investigate alternative Turkish fuels fortheir ignition, combustion, pyrolysis, and gasification behavior and to select alternative fuels for co-firing, co-pyrolysis, and co-gasification applications based on low and high heating rate experimental results. Agricultural biomass (olive residue, almond shell, and hazelnut shell)and Turkish lignites (Tunçbilek, and Soma) were chosen as the feedstocks. Severalexperimental rigs used such as thermogravi...
Designing the C-GEN lightweight direct drive generator for wave and tidal energy
Keysan, Ozan; McDonald, Alasdair; Hodgins, Neil; Shek, Jonathan (Institution of Engineering and Technology (IET), 2012-05-01)
The C-GEN is a novel permanent magnet generator aimed at reducing overall system mass in direct drive power takeoff applications. The design of a C-GEN generator requires the combination of electromagnetic, structural and thermal models. Models used in the development of design tools applicable to both rotary and linear C-GEN generators are described in this study. The design tool is verified with the experiment results obtained from a 15 kW prototype. A genetic optimisation algorithm is developed combining...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Ghafouri, S. Shafee, and A. Maghbouli, “Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code,”
Thermal Science
, pp. 89–96, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51462.