Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Influence of Farming Intensity and Climate on Lowland Stream Nitrogen
Download
10.3390:w12041021.pdf
Date
2020-4-2
Author
Goyenola, Guillermo
Graeber, Daniel
Meerhof, Mariana
Jeppesen, Erik
Teixeira-de Mello, Franco
Vidal, Nicolás
Fosalba, Claudia
Ovesen, Niels Bering
Gelbrecht, Joerg
Mazzeo, Néstor
Kronvang, Brian
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Nitrogen lost from agriculture has altered the geochemistry of the biosphere, with pronounced impacts on aquatic ecosystems. We aim to elucidate the patterns and driving factors behind the N fluxes in lowland stream ecosystems differing about land-use and climatic-hydrological conditions. The climate-hydrology areas represented humid cold temperate/stable discharge conditions, and humid subtropical climate/flashy conditions. Three complementary monitoring sampling characteristics were selected, including a total of 43 streams under contrasting farming intensities. Farming intensity determined total dissolved N (TDN), nitrate concentrations, and total N concentration and loss to streams, despite differences in soil and climatic-hydrological conditions between and within regions. However, ammonium (NH4+) and dissolved organic N concentrations did not show significant responses to the farming intensity or climatic/hydrological conditions. A high dissolved inorganic N to TDN ratio was associated with the temperate climate and high base flow conditions, but not with farming intensity. In the absence of a significant increase in farming N use efficiency (or the introduction of other palliative measures), the expected farming intensification would result in a stronger increase in NO3−, TDN, and TN concentrations as well as in rising flow-weighted concentrations and loss in temperate and subtropical streams, which will further exacerbate eutrophication.
Subject Keywords
Geography, Planning and Development
,
Aquatic Science
,
Biochemistry
,
Water Science and Technology
,
Agricultural impact
,
Stream
,
Nitrogen concentration
,
Nitrogen losses
,
Eutrophication
URI
https://hdl.handle.net/11511/51489
Journal
Water
DOI
https://doi.org/10.3390/w12041021
Collections
Department of Biology, Article