Stability of carbon nanoonion C-20@C-60@C-240: Molecular dynamics simulations

2002-03-01
Erkoç, Şakir
The structural stability of carbon nanoonion C-20@C-60@C-240 has been investigated by performing molecular dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanoonion is not so resistive against heat treatment, nor is it as strong as isolated single carbon nanoballs. Although single nanoballs resist heat treatment up to 4300 K, nanoonion disintegrates after 2600 K.
NANO LETTERS

Suggestions

Structural stability of carbon nanocapsules: Molecular-dynamics simulations
Malcıoğlu, Osman Barış; Yilmaz, A; Erkoc, S (2003-09-12)
Structural stability of empty and endohedrally doped carbon nanocapsules have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that empty carbon nanocapsules are relatively more stable with respect to endohedrally doped ones against heat treatment.
Stability of carbon nanotori under heat treatment: Molecular-dynamics simulations
Tasci, E; Yazgan, E; Malcıoğlu, Osman Barış; Erkoc, S (Informa UK Limited, 2005-04-01)
The structural stability of carbon nanotori have been investigated by performing molecular-dynamics simulations. The systems considered are C-170, C-250, C-360, C-520 and C-750 tori, which have been constructed using a recently developed algorithm based on the idea of Fonseca et al. Calculations, have been realized by using an empirical many-body potential energy function for carbon. It has been found that all the nanotori considered are stable under heat treatment.
Molecular-dynamics simulations of carbon nanocage structures: Nanoballs and nanotoroids
Erkoç, Şakir; Vural, DC (World Scientific Pub Co Pte Lt, 2001-06-01)
The structural stability of carbon nanocages, fullerens and toroids, have been investigated by performing molecular-dynamics computer simulations. The systems considered are C-120 and C-240 in ball and toroidal structures. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that C-120 ball is very unstable, and the other structures are relatively more strong against heat treatment.
Stability analysis of graphene nanoribbons by molecular dynamics simulations
Dugan, N.; Erkoç, Şakir (Wiley, 2008-04-01)
In this work, stability of graphene nanoribbons are investigated using molecular dynamics. Simulations include heating armchair and zigzag-edged nanoribbons of widths varying between one and nine hexagonal rings until the bonds between carbon atoms start to break. Breaking temperatures and binding energies per atom for different widths are presented for both armchair and zigzag-edged cases. A nontrivial relation between stability and width is observed and discussed.
Stability of carbon nanotori
Yazgan, E; Tasci, E; Malcıoğlu, Osman Barış; Erkoç, Şakir (2003-09-12)
The structural stability of carbon nanotori have been investigated by performing molecular--dynamics simulations. The systems considered are C-170, C-360, C-520, and C-750 tori, which have been constructed using an algorithm developed in our laboratory based on Fonseca's idea. Calculations have been realized by using an empirical many-body potential energy function for carbon.
Citation Formats
Ş. Erkoç, “Stability of carbon nanoonion C-20@C-60@C-240: Molecular dynamics simulations,” NANO LETTERS, pp. 215–217, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51554.