Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Multiobjective Algorithms for the Classification of Multi-Label Video Datasets
Download
10.1109:ACCESS.2020.3022317.pdf
Date
2020
Author
Karagoz, Gizem Nur
Yazıcı, Adnan
Dokeroglu, Tansel
Cosar, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
116
downloads
Cite This
It is of great importance to extract and validate an optimal subset of non-dominated features for effective multi-label classification. However, deciding on the best subset of features is an NP-Hard problem and plays a key role in improving the prediction accuracy and the processing time of video datasets. In this study, we propose autoencoders for dimensionality reduction of video data sets and ensemble the features extracted by the multi-objective evolutionary Non-dominated Sorting Genetic Algorithm and the autoencoder. We explore the performance of well-known multi-label classification algorithms for video datasets in terms of prediction accuracy and the number of features used. More specifically, we evaluate Non-dominated Sorting Genetic Algorithm-II, autoencoders, ensemble learning algorithms, Principal Component Analysis, Information Gain, and Correlation Based Feature Selection. Some of these algorithms use feature selection techniques to improve the accuracy of the classification. Experiments are carried out with local feature descriptors extracted from two multi-label datasets, the MIR-Flickr dataset which consists of images and the Wireless Multimedia Sensor dataset that we have generated from our video recordings. Significant improvements in the accuracy performance of the algorithms are observed while the number of features is being reduced.
Subject Keywords
General Engineering
,
General Materials Science
,
General Computer Science
,
Feature extraction
,
Prediction algorithms
,
Optimization
,
Dimensionality reduction
,
Machine learning algorithms
,
Genetic algorithms
,
Support vector machines
,
Feature selection
,
Multi-label
,
Multi-objective optimization
,
Autoencoder
,
Ensemble
,
Classification
URI
https://hdl.handle.net/11511/51565
Journal
IEEE Access
DOI
https://doi.org/10.1109/access.2020.3022317
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Identifying (Quasi) Equally Informative Subsets in Feature Selection Problems for Classification: A Max-Relevance Min-Redundancy Approach
Karakaya, Gülşah; AHİPAŞAOĞLU, Selin Damla; TAORMİNA, Riccardo (2016-06-01)
An emerging trend in feature selection is the development of two-objective algorithms that analyze the tradeoff between the number of features and the classification performance of the model built with these features. Since these two objectives are conflicting, a typical result stands in a set of Pareto-efficient subsets, each having a different cardinality and a corresponding discriminating power. However, this approach overlooks the fact that, for a given cardinality, there can be several subsets with sim...
Analysis of Face Recognition Algorithms for Online and Automatic Annotation of Personal Videos
Yılmaztürk, Mehmet; Ulusoy Parnas, İlkay; Çiçekli, Fehime Nihan (Springer, Dordrecht; 2010-05-08)
Different from previous automatic but offline annotation systems, this paper studies automatic and online face annotation for personal videos/episodes of TV series considering Nearest Neighbourhood, LDA and SVM classification with Local Binary Patterns, Discrete Cosine Transform and Histogram of Oriented Gradients feature extraction methods in terms of their recognition accuracies and execution times. The best performing feature extraction method and the classifier pair is found out to be SVM classification...
Interactive evolutionary approaches to multi-objective feature selection
Özmen, Müberra; Köksalan, Murat; Karakaya, Gülşah; Department of Industrial Engineering (2016)
In feature selection problems, the aim is to select a subset of features to characterize an output of interest. In characterizing an output, we may want to consider multiple objectives such as maximizing classification performance, minimizing number of selected features or cost, etc. We develop a preference-based approach for multi-objective feature selection problems. Finding all Pareto optimal subsets may turn out to be a computationally demanding problem and we still would need to select a solution event...
Interactive evolutionary approaches to multiobjective feature selection
ÖZMEN, müberra; Karakaya, Gülşah; KÖKSALAN, MUSTAFA MURAT (Wiley, 2018-05-01)
In feature selection problems, the aim is to select a subset of features to characterize an output of interest. In characterizing an output, we may want to consider multiple objectives such as maximizing classification performance, minimizing number of selected features or cost, etc. We develop a preference-based approach for multiobjective feature selection problems. Finding all Pareto-optimal subsets may turn out to be a computationally demanding problem and we still would need to select a solution. There...
Comparison of regression techniques via Monte Carlo simulation
Mutan, Oya Can; Ayhan, Hüseyin Öztaş; Department of Statistics (2004)
The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. N. Karagoz, A. Yazıcı, T. Dokeroglu, and A. Cosar, “Analysis of Multiobjective Algorithms for the Classification of Multi-Label Video Datasets,”
IEEE Access
, pp. 163937–163952, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51565.