Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

Cunningham, W. Streit
Gentile, Jonathan M.
El-Atwani, Osman
Taylor, Chase N.
Maloy, Stuart A.
Trelewicz, Jason R.
Efe, Mert
The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity via grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.
Scientific Reports


Radiation effect studies on partially crystalline bulk amorphous Fe-based metallic glass
Kiceci, Pelin Uslu; Akdeniz, Mahmut Vedat; Demirköz, Melahat Bilge; Mehrabov, Amdulla (2022-02-01)
The selection of appropriate materials for radiation environments is critical due to the harsh and aggressive conditions found in such environments, which are liable to degrade material properties. Therefore, durability of materials should be tested before being deployed. In this respect, proton tests are required for the materials to be used in the space environment because dominant galactic cosmic rays mostly comprised high energy protons. Bulk metallic glasses are candidate for space environment due to t...
Reinforcement of polyesters by boron minerals
Akgün, Aydın Mert; Tinçer, Teoman; Özdemir, Tonguç; Department of Polymer Science and Technology (2015)
Polymers are used in areas where exposure to high-energy radiation might occur. Main effects of irradiation on polymers are crosslinking, chain scission and oxidation. Radiation resistance of polymers depends on structure, additives, or irradiation conditions. Since boron is highly effective material against radiation, especially against neutron radiation, with its high absorption cross section, boron products is used for radiation applications. The aim of this study is to investigate the effects of differe...
Strain Gradient Crystal Plasticity Approach to Modelling Micro-Plastic Flow and Localisation in Polycrystalline Materials
Simonovski, Igor; Yalçınkaya, Tuncay (2015-09-17)
Structural materials in the reactor pressure vessels are exposed to a harsh environment, resulting in a number of material degradation processes. Irradiation generates a number of point defects in the atomic structure of a material. In addition, plastic slip localization occurs on the grain level size where highly-deformed narrow bands of material appear already at the moderate strain levels. These bands are called channels or clear bands, because they are almost empty of irradiation defects, whereas the su...
Bahtiyar, Doruk; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2022-9)
For many years, materials in the form of metal sulfides, oxides, phosphates, and titanates have been developed as cathode and anode active materials to be used in energy storage devices. Borides and borates, recently, attracted the attention of researchers in this field. In this study, for the development of a new class of materials for energy storage applications, synthesis and characterization of metal (Fe, Mo, Mn, and V) borides and (Mn, and Y)borates were carried out. The obtained materials were tested ...
Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
Meyva, Y.; Kaynak, Cevdet (2015-11-01)
The purpose of this study was to improve toughness of inherently very brittle polylactide (PLA) without sacrificing strength and thermal properties, so that biopolymer PLA could be used in engineering applications. For this purpose, PLA was blended with various amounts of two different thermoplastic elastomers; TPU (petroleum-based thermoplastic polyurethane) and TPE (bio-based thermoplastic polyester). Melt blending and specimen shaping were achieved by using a twin-screw extruder and injection molder, res...
Citation Formats
W. S. Cunningham et al., “Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten,” Scientific Reports, 2018, Accessed: 00, 2020. [Online]. Available: