Transport of neutral atoms in plasma with a source of neutral atoms and molecules

1989-1-1
Bilikmen, Sinan
Rhimi, Mohamed Nazih
A model for steady state neutral atom transport in a finite thickness, one dimensional plasma slab with a source of neutrals and molecules at the edge, is formulated. A computer code OMID is developed for computational analysis. The analysis shows that the cold neutral particle density is maximum near the wall, the total fuelling profile peaks in the vicinity of the wall for a molecular source more than for an atomic one, energetic neutrals formed in successive charge exchange collisions carry energy to the wall and sputter impurity atoms back to the plasma. For low edge temperatures where molecular hydrogen is dissociated, mostly atomic hydrogen is produced, the ionization profile shifts towards the wall as the edge temperature is raised and more ions are created directly from molecular dissociation. The effect of varying the incident neutral particle energy has been investigated. The comparison of the results with the predictions of other codes showed satisfactory agreement for regions close to the wall.
Physica Scripta

Suggestions

Electronic, mechanical and lattice dynamical properties of YXB4 (X = Cr, Mn, Fe, and Co) compounds
CANDAN, ABDULLAH; SÜRÜCÜ, GÖKHAN; Gencer, Ayşenur (IOP Publishing, 2019-12-01)
In this study, the physical such as structural, electronic, anisotropic elastic and lattice dynamic properties of YXB4 (X = Cr, Mn, Fe and Co) compounds have been investigated. The electronic properties including band structure and corresponding partial density of states for YXB4 have been calculated. YFeB4 and YCoB4 compounds are found to have metallic behavior while YCrB4 and YMnB4 have semiconductor behavior. Also, the compounds are found to be as non-magnetic materials. The calculated elastic constants ...
Radiative damping of whistlers in a dense magnetoactive plasma waveguide
Yilmaz, A; Oke, G; Rukhadze, A; Bilikmen, S (IOP Publishing, 1996-06-01)
The absorption of whistler waves in a magnetized cylindrical plasma due to coupling with oblique Langmuir waves is investigated. Two types of mechanisms exist for whistler absorption. The first one is related to the excitation of Langmuir waves in the volume of the dense plasma and their subsequent absorption due to the electron collisions. The second one is the emission of Langmuir waves outside of the cylindrical plasma when it is surrounded by the rare plasma. The relation between these whistler absorpti...
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
CHAOTIC ELECTRON TRAJECTORIES IN QUADRUPOLE WIGGLER FREE-ELECTRON LASER
BILIKMEN, S; ABUSAFA, M (IOP Publishing, 1994-08-01)
The motion of an individual electron in a FEL in a field configuration consisting of an ideal quadrupole-wiggler field and uniform axial-guide field, is shown to be nonintegrable in Hamiltonian formulations and can become chaotic for certain initial conditions. The presence of chaos, which is induced by the transverse spatial inhomogenieties in the wiggler field; and the self-fields produced by the space charge and current, poses limits on the wiggler field amplitude and the beam size for beam propagation i...
Solution of the Dirac equation for pseudoharmonic potential by using the Nikiforov-Uvarov method
Aydogdu, Oktay; Sever, Ramazan (IOP Publishing, 2009-07-01)
We investigate the energy spectra and corresponding wave functions of the Dirac equation for pseudoharmonic potential with spin and pseudospin symmetry. To obtain an analytical solution of the Dirac equation, we consider the Nikiforov-Uvarov method in the calculations. For any spin-orbit coupling term kappa, we find the closed forms of the energy eigenvalues and also obtain the radial wave functions in the spin and pseudospin symmetry limits.
Citation Formats
S. Bilikmen and M. N. Rhimi, “Transport of neutral atoms in plasma with a source of neutral atoms and molecules,” Physica Scripta, pp. 84–91, 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51764.