CHAOTIC ELECTRON TRAJECTORIES IN QUADRUPOLE WIGGLER FREE-ELECTRON LASER

1994-08-01
BILIKMEN, S
ABUSAFA, M
The motion of an individual electron in a FEL in a field configuration consisting of an ideal quadrupole-wiggler field and uniform axial-guide field, is shown to be nonintegrable in Hamiltonian formulations and can become chaotic for certain initial conditions. The presence of chaos, which is induced by the transverse spatial inhomogenieties in the wiggler field; and the self-fields produced by the space charge and current, poses limits on the wiggler field amplitude and the beam size for beam propagation in Free-Electron Laser operation. Upon plotting Poincare surface-of-section maps, it is shown that the electron dynamics is chaotic.
PHYSICA SCRIPTA

Suggestions

Coherent states for PT-/non-PT-symmetric and non-Hermitian Morse potentials via the path integral method
KANDIRMAZ, NALAN; Sever, Ramazan (IOP Publishing, 2010-03-01)
We discuss the coherent states for PT-/non-PT-symmetric and non-Hermitian generalized Morse potentials obtained by using path integral formalism over the holomorphic coordinates. We transform the action of generalized Morse potentials into two harmonic oscillators with a new parametric time to establish the parametric time coherent states. We calculate the energy eigenvalues and the corresponding wave functions in parabolic coordinates.
Covariant Bethe-Salpeter equation for heavy Q(Q)over-bar bound states
Zakout, I; Sever, Ramazan (IOP Publishing, 1997-02-01)
We investigate a numerical solution of the covariant Bethe-Salpeter equation in the Euclidean space for heavy meson with gluon ladder in the Landau gauge and scalar confinement. A new approach is presented to solve the non-linear eigenvalue problem with suitable bases and fictitious eigenvalue parameters. We obtain unphysical states when the equation is solved for timelike spectra. We also present how to cover the singularity of a free quark propagator and Schwinger-Dyson equation when extrapolated to the ...
The Dirac-Yukawa problem in view of pseudospin symmetry
AYDOĞDU, OKTAY; Sever, Ramazan (IOP Publishing, 2011-08-01)
An approximate analytical solution of the Dirac equation for the Yukawa potential under the pseudospin symmetry condition is obtained using the asymptotic iteration method. We discover the energy eigenvalue equation and some of the numerical results are listed. Wave functions are obtained in terms of hypergeometric functions. Extra degeneracies are removed by adding a new term, A/r(2), to the Yukawa potential. The effects of tensor interaction on the two states in the pseudospin doublet are also investigated.
Scattering and bound state solutions of the asymmetric Hulthen potential
Arda, Altug; AYDOĞDU, OKTAY; Sever, Ramazan (IOP Publishing, 2011-08-01)
The one-dimensional time-independent Schrodinger equation is solved for the asymmetric Hulthen potential. The reflection and transmission coefficients and bound state solutions are obtained in terms of the hypergeometric functions. It is observed that the unitary condition is satisfied in the non-relativistic region.
THE NONLINEAR COLD PLASMA-BUNCHED BEAM INTERACTION AND THE PLASMA WAKEFIELD ACCELERATOR CASE
BILIKMEN, S; NAZIH, RM (IOP Publishing, 1993-02-01)
In this paper, a nonlinear analytical solution for a cold plasma-bunched beam system based on the Hamiltonian formalism where alpha = n(b)/n0 and beta(phi) = upsilon(phi)/c have been taken as parameters matching between zero and unity is given. The oscillation limiting energies, frequencies and transformer ratios have been carried out in general for both the one-dimensional and the case where a small transverse component of motion is included. The plasma wakefield accelerator has been treated as a special c...
Citation Formats
S. BILIKMEN and M. ABUSAFA, “CHAOTIC ELECTRON TRAJECTORIES IN QUADRUPOLE WIGGLER FREE-ELECTRON LASER,” PHYSICA SCRIPTA, pp. 125–134, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65516.