Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
First-principle investigation for the hydrogen storage properties of NaXH3 (X= Mn, Fe, Co) perovskite type hydrides
Date
2019-11-15
Author
SÜRÜCÜ, GÖKHAN
CANDAN, ABDULLAH
Gencer, Ayşenur
IŞIK, MEHMET
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
In the present study, NaXH3 (X = Mn, Fe, Co) perovskite type hydrides have been investigated by performing first-principles calculation. The results of the structural optimizations show that all these compounds have negative formation energy implying the thermodynamic stability and synthesisability. The mechanical stability of these compounds has been studied with the elastic constants. Moreover, the polycrystalline properties like bulk modulus, Poisson's ratio, etc. have been obtained using calculated elastic constants of interest compounds. The electronic properties have been studied and band structures have been drawn with the corresponding partial density of states. These plots indicated that NaXH3 hydrides show metallic characteristics. The charge transfer characteristics in these compounds have been studied with the Bader partial charge analysis. The phonon dispersion curves and corresponding density of states indicated that NaXH3 compounds are dynamically stable compounds. The investigation on hydrogen storage characteristics of NaXH3 compounds resulted in hydrogen storage capacities of 3.74, 3.70 and 3.57 wt% for X = Mn, Fe and Co, respectively. The present study is the first investigation of NaXH3 perovskite type hydrides as known up to date and may provide remarkable contribution to the future researches in hydrogen storage applications. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/51788
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2019.09.201
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Investigation of structural, electronic and lattice dynamical properties of XNiH3 (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications
Gencer, Ayşenur; Surucu, Gokhan (Elsevier BV, 2019-06-07)
XNiH3 (X = Li, Na, and K) perovskite type hydrides have been studied by using Density Functional Theory (DFT) and these materials are found to be stable and synthesizable. The X-ray diffraction patterns have been obtained and they indicate that all materials have the polycrystalline structure. The electronic properties have been investigated and it has been found that these structures show metallic character. The Bader partial charge analysis has also been performed. In addition, the elastic constants have ...
Properties of BaYO3 perovskite and hydrogen storage properties of BaYO3Hx
Gencer, Ayşenur; Surucu, Gokhan (Elsevier BV, 2020-03-27)
In this study, Density Functional Theory (DFT) calculations have been performed for BaYO3 perovskite with the generalized gradient approximation (GGA) as implemented in Vienna Ab-initio Simulation Package (VASP). The structural optimization of BaYO3 perovskite have been studied for the five possible phases: cubic, tetragonal, hexagonal, orthorhombic and rhombohedral to determine the most stable phase of BaYO3 perovskite. It has been found that the cubic phase is the most stable one and electronic and mechan...
Enhancement of hydrogen storage properties of Ca3CH antiperovskite compound with hydrogen doping
Gencer, Ayşenur; Surucu, Gokhan (Wiley, 2020-01-01)
The doping effect of hydrogen on the Ca3CHx (x = 1, 4, 7, 9, and 10) antiperovskite compounds has been examined using density functional theory (DFT). The results of the structural optimizations show that all these compounds have negative formation energy implying the energetic stability and synthesizability. The band structures that are essential for the electronic properties have been determined along with the partial density of states (DOS) showing the metallic behavior of these compounds. In addition, t...
Development and characterization of layered Li(NixMnyCo1-x-y)O-2 cathode materials for lithium ion batteries
Piskin, Berke; Aydınol, Mehmet Kadri (Elsevier BV, 2016-06-22)
The structure of the layered Li(NixMnyCo1-x-y)O-2 in different amounts of x and y ranging between 0.2 and 0.6, have been synthesized and investigated by powder X-ray diffraction and electron microscopy techniques. In the current work spray pyrolysis was used to obtain spherical fine-sized morphology followed by heat treatment to obtain better electrochemical activity. The precursor powders were prepared using aqueous solution via spray pyrolysis. Synthesized samples were then heat treated at 850 degrees C. ...
Investigation of Porosity and Permeability Impairment in Sandstones by X-ray Analysis and Simulation
Iscan, A. G.; Kök, Mustafa Verşan; Civan, F. (Informa UK Limited, 2009-01-01)
Both porosity and permeability constitute the major parameters in core analysis. In this study, the variation of these two parameters along a sandstone core sample was investigated during formation damage. A water-based drilling fluid was dynamically circulated through the core sample for three different time intervals of 15 min, 45 min, and 60 min at 100 psi circulation pressure. The core sample was analyzed using x-ray digital radiography by sectional image approach. The differences in the porous media du...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. SÜRÜCÜ, A. CANDAN, A. Gencer, and M. IŞIK, “First-principle investigation for the hydrogen storage properties of NaXH3 (X= Mn, Fe, Co) perovskite type hydrides,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 30218–30225, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51788.