Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A flexible reference point-based multi-objective evolutionary algorithm: An application to the UAV route planning problem
Date
2020-02-01
Author
DAŞDEMİR, ERDİ
Köksalan, Mustafa Murat
TEZCANER ÖZTÜRK, DİCLEHAN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
We study the multi-objective route planning problem of an unmanned air vehicle (UAV) moving in a continuous terrain. In this problem, the UAV starts from a base, visits all targets and returns to the base in a continuous terrain that is monitored by radars. We consider two objectives: minimizing total distance and minimizing radar detection threat. This problem has infinitely many Pareto-optimal points and generating all those points is not possible. We develop a general preference-based multi-objective evolutionary algorithm to converge to preferred solutions. Preferences of a decision maker (DM) are elicited through reference point(s) and the algorithm converges to regions of the Pareto-optimal frontier close to the reference points. The algorithm allows the DM to change his/her reference point(s) whenever he/she so wishes. We devise mechanisms to prevent the algorithm from producing dominated points at the final population. We also develop mechanisms specific to the UAV route planning problem and test the algorithm on several UAV routing problems as well as other well-known problem instances. We demonstrate that our algorithm converges to preferred regions on the Pareto-optimal frontier and adapts to changes in the reference points quickly.
Subject Keywords
Management Science and Operations Research
,
Modelling and Simulation
,
General Computer Science
URI
https://hdl.handle.net/11511/51797
Journal
COMPUTERS & OPERATIONS RESEARCH
DOI
https://doi.org/10.1016/j.cor.2019.104811
Collections
Department of Industrial Engineering, Article