Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment

2012-01-01
Eresen, Aydin
Imamoglu, Nevrez
Efe, Mehmet Onder
In this paper, vision-based autonomous flight with a quadrotor type unmanned aerial vehicle (UAV) is presented. Automatic detection of obstacles and junctions are achieved by the use of optical flow velocities. Variation in the optical flow is used to determine the reference yaw angle. Path to be followed is generated autonomously and the path following process is achieved via a PID controller operating as the low level control scheme. Proposed method is tested in the Google Earth (R) virtual environment for four different destination points. In each case. autonomous UAV flight is successfully simulated without observing collisions. The results show that the proposed method is a powerful candidate for vision based navigation in an urban environment. Claims are justified with a set of experiments and it is concluded that proper thresholding of the variance of the gradient of optical flow difference have a critical effect on the detectability of roads having different widths.
EXPERT SYSTEMS WITH APPLICATIONS

Suggestions

Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
GPS based altitude control of an unmanned air vehicle using digital terrain elevation data
Ataç, Selçuk; Platin, Bülent Emre; Department of Mechanical Engineering (2006)
In this thesis, an unmanned air vehicle (UAV) is used to develop a prototype base test platform for flight testing of new control algorithms and avionics for advanced UAV system development applications. A control system that holds the UAV at a fixed altitude above the ground is designed and flight tested. Only the longitudinal motion of the UAV is considered during the controller design, hence its lateral motions are controlled manually by a remote control unit from the ground. UAV’s altitude with respect ...
Aero-structural design and analysis of an unmanned aerial vehicle and its mission adaptive wing
İnsuyu, Erdoğan Tolga; Şahin, Melin; Department of Aerospace Engineering (2010)
This thesis investigates the effects of camber change on the mission adaptive wing of a structurally designed unmanned aerial vehicle (UAV). The commercial computational fluid dynamics (CFD) software ANSYS/FLUENT is employed for the aerodynamic analyses. Several cambered airfoils are compared in terms of their aerodynamic coefficients and the effects of the camber change formed in specific sections of the wing on the spanwise pressure distribution are investigated. The mission adaptive wing is modeled struc...
Experimental Investigation of Optimal Gap Distance between Rotors of a Quadrotor UAV
Kaya, Dilber Derya; Kutay, Ali Türker; Tekinalp, Ozan (2017-06-09)
The effect of spacing between the rotors of a quadrotor Unmanned Aerial Vehicle (UAV) in hovering flight is investigated. Experiments are conducted to obtain a mathematical relation between the diameter of the rotor and gap distance between each rotor. Constraints such as the maximum thrust force and minimum energy consumption are imposed. Several rotors having different sizes are tested at various RPMs with a changing gap distances, and total thrust produced by four rotors is measured. The results are give...
Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (2016-05-20)
In this study, design and implementation of control system of a vertical take-off and landing (VTOL) unmanned aerial vechicle (UAV) with level flight capability is considered. The platform structure includes both multirotor and fixed-wing (FW) conventional aircraft control surfaces: therefore named as VTOL-FW. The proposed method includes implementation of multirotor and airplane controllers and design of an algorithm to switch between them in achieving transitions between VTOL and FW flight modes. Thus, VT...
Citation Formats
A. Eresen, N. Imamoglu, and M. O. Efe, “Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment,” EXPERT SYSTEMS WITH APPLICATIONS, pp. 894–905, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67058.