Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interval oscillation of a general class of second-order nonlinear differential equations with nonlinear damping
Date
2005-01-01
Author
Tiryaki, A
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
The paper is concerned with the oscillation of a class of general type second order differential equations with nonlinear damping terms. Several new interval oscillation criteria are established for such a class of differential equations under quite general assumptions. Examples are also given to illustrate the results. In particular, it is shown that under some very mild conditions on k(1), k(2), and f the equation
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/51812
Journal
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
DOI
https://doi.org/10.1016/j.na.2004.08.020
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
On Stability of Linear Delay Differential Equations under Perron's Condition
Diblík, J.; Zafer, A. (Hindawi Limited, 2011)
The stability of the zero solution of a system of first-order linear functional differential equations with nonconstant delay is considered. Sufficient conditions for stability, uniform stability, asymptotic stability, and uniform asymptotic stability are established.
Oscillation criteria for third-order nonlinear functional differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, A.; Zafer, Ağacık (Elsevier BV, 2010-07-01)
In this work, we are concerned with oscillation of third-order nonlinear functional differential equations of the form
Asymptotic behavior of solutions of differential equations with piecewise constant arguments
Akhmet, Marat (Elsevier BV, 2008-09-01)
The main goal of the work is to obtain sufficient conditions for the asymptotic equivalence of a linear system of ordinary differential equations and a quasilinear system of differential equations with piecewise constant argument.
Least-squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of diffusive-convective problems
Bozkaya, Canan (Elsevier BV, 2007-01-01)
Least-squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in diffusive-convective type problems with variable coefficients. The DRBEM enables us to use the fundamental solution of Laplace equation, which is easy to implement computation ally. The terms except the Laplacian are considered as the nonhomogeneity in the equation, which ar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Tiryaki and A. Zafer, “Interval oscillation of a general class of second-order nonlinear differential equations with nonlinear damping,”
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
, pp. 49–63, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51812.