Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mathematical contributions to dynamics and optimization of gene-environment networks
Date
2008-01-01
Author
Weber, Gerhard Wilhelm
Tezel, Aysun
TAYLAN, PAKİZE
Soyler, Alper
Cetin, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
This article contributes to a further introduction of continuous optimization in the field of computational biology which is one of the most challenging and emerging areas of science, in addition to foundations presented and the state-of-the-art displayed in [C.A. Floudas and P.M. Pardalos, eds., Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, Kluwer Academic Publishers, Boston, 2000]. Based on a summary of earlier works by the coauthors and their colleagues, it refines the model on gene-environment patterns by a problem from generalized semi-infinite programming (GSIP), and characterizes the condition of its structural stability. Furthermore, our paper tries to detect and understand structural frontiers of our methods applied to the recently introduced gene-environment networks and tries to overcome them. Computational biology is interdisciplinary, but it also looks for its mathematical foundations. From data got by DNA microarray experiments, non-linear ordinary differential equations are extracted by the optimization of least-squares errors; then we derive corresponding time-discretized dynamical systems. Using a combinatorial algorithm with polyhedra sequences we can detect the regions of parametric stability, contributing to a testing the goodness of data fitting of the model. To represent and interpret the dynamics, certain matrices, genetic networks and, more generally, gene-environment networks serve. Here, we consider n genes in possible dependence with m special environmental factors and a cumulative one. These networks are subject of discrete mathematical questions, but very large structures, such that we need to simplify them. This is undertaken in a careful optimization with constraints, aiming at a balanced connectedness, incorporates any type of a priori knowledge or request and should be done carefully enough to be robust against disturbation by the environment. In this way, we take into account attacks on the network, knockout phenomena and catastrophies, but also changes in lifestyle and effects of education as far as they can approximately be quantified. We characterize the structural stability of the GSIP problem against perturbations like changes between data series or due to outliers. We give explanations on the numerics and the use of splines. This study is an attempt to demonstrate some beauty and applicabilty of continuous optimization which might together one day give a support in health care, food engineering, biomedicine and -technology, including elements of bioenergy and biomaterials.
Subject Keywords
Management Science and Operations Research
,
Control and Optimization
,
Applied Mathematics
URI
https://hdl.handle.net/11511/51814
Journal
OPTIMIZATION
DOI
https://doi.org/10.1080/02331930701780037
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology
Taylan, P.; Weber, Gerhard Wilhelm; Beck, A. (Informa UK Limited, 2007-10-01)
Generalized additive models belong to modern techniques frorn statistical learning, and are applicable in many areas of prediction, e.g. in financial mathamatics, computational biology, medicine, chemistry and environmental protection. In these models, the expectation of response is linked to the predictors via a link function. These models are fitted through local scoring algorithm using it scatterplot smoother as building blocks proposed by Hastie and Tibshirani (1987). In this article, we first give it s...
Effective optimization with weighted automata on decomposable trees
Ravve, E. V.; Volkovich, Z.; Weber, Gerhard Wilhelm (Informa UK Limited, 2014-01-02)
In this paper, we consider quantitative optimization problems on decomposable discrete systems. We restrict ourselves to labeled trees as the description of the systems and we use weighted automata on them as our computational model. We introduce a new kind of labeled decomposable trees, sum-like weighted labeled trees, and propose a method, which allows us to reduce the solution of an optimization problem, defined in a fragment of Weighted Monadic Second Order Logic, on such a tree to the solution of effec...
An application of the minimal spanning tree approach to the cluster stability problem
Volkovich, Z.; Barzily, Z.; Weber, Gerhard Wilhelm; Toledano-Kitai, D.; Avros, R. (Springer Science and Business Media LLC, 2012-03-01)
Among the areas of data and text mining which are employed today in OR, science, economy and technology, clustering theory serves as a preprocessing step in the data analyzing. An important component of clustering theory is determination of the true number of clusters. This problem has not been satisfactorily solved. In our paper, this problem is addressed by the cluster stability approach. For several possible numbers of clusters, we estimate the stability of the partitions obtained from clustering of samp...
Optimization of truss bridges within a specified design domain using evolution strategies
Hasançebi, Oğuzhan (Informa UK Limited, 2007-09-01)
This article reports and investigates the application of evolution strategies (ESs) to optimize the design of truss bridges. This is a challenging optimization problem associated with mixed design variables, since it involves identification of the bridge's shape and topology configurations in addition to the sizing of the structural members for minimum weight. A solution algorithm to this problem is developed by combining different variable-wise versions of adaptive ESs under a common optimization routine. ...
Mutual relevance of investor sentiment and finance by modeling coupled stochastic systems with MARS
Kalayci, Betul; Ozmen, Ayse; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-08-01)
Stochastic differential equations (SDEs) rapidly become one of the most well-known formats in which to express such diverse mathematical models under uncertainty such as financial models, neural systems, behavioral and neural responses, human reactions and behaviors. They belong to the main methods to describe randomness of a dynamical model today. In a financial system, different kinds of SDEs have been elaborated to model various financial assets. On the other hand, economists have conducted research on s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. W. Weber, A. Tezel, P. TAYLAN, A. Soyler, and M. Cetin, “Mathematical contributions to dynamics and optimization of gene-environment networks,”
OPTIMIZATION
, pp. 353–377, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51814.