Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A computer simulation of amorphous silicon
Date
1989-7-1
Author
Dereli, Guelay
Yalabık, M.Cemal
Ellialtıoğlu, Şinasi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
n this work we simulated the growth of amorphous silicon on a substrate of a two-layer-slab of crystalline silicon with various surface indices. We used the Lennard-Jones form for the pair potentials and the Axilrod-Teller form for the three-body potentials. The growth is realized by means of a continuum Monte-Carlo method and the radial distribution functions are compared for various cases
Subject Keywords
Mathematical physics
,
Atomic and molecular physics
,
Optics
,
Condensed matter physics
URI
https://hdl.handle.net/11511/52085
Journal
Physica Scripta
DOI
https://doi.org/10.1088/0031-8949/40/1/016
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
THE NONLINEAR COLD PLASMA-BUNCHED BEAM INTERACTION AND THE PLASMA WAKEFIELD ACCELERATOR CASE
BILIKMEN, S; NAZIH, RM (IOP Publishing, 1993-02-01)
In this paper, a nonlinear analytical solution for a cold plasma-bunched beam system based on the Hamiltonian formalism where alpha = n(b)/n0 and beta(phi) = upsilon(phi)/c have been taken as parameters matching between zero and unity is given. The oscillation limiting energies, frequencies and transformer ratios have been carried out in general for both the one-dimensional and the case where a small transverse component of motion is included. The plasma wakefield accelerator has been treated as a special c...
A 2D Slotted Rod Type PhC Cavity Inertial Sensor Design for Impact Sensing
Orsel, Ogulcan Emre; ERDİL, MERTCAN; Kocaman, Serdar (Institute of Electrical and Electronics Engineers (IEEE), 2020-02-01)
A tunable 2D rod type Si Photonic Crystal cavity based impact sensing configuration is proposed and numerically analyzed. The cavity is sandwiched by perfect electric conductor (PEC) boundaries in order to provide out-of-plane light confinement. An on-purpose air slot is introduced between the Si rods and top PEC plate moving the light confinement into the slotted region and making the cavity highly responsive to the displacement of top PEC boundary. Optomechanical coupling strength is calculated to be on t...
Transport of neutral atoms in plasma with a source of neutral atoms and molecules
Bilikmen, Sinan; Rhimi, Mohamed Nazih (IOP Publishing, 1989-1-1)
A model for steady state neutral atom transport in a finite thickness, one dimensional plasma slab with a source of neutrals and molecules at the edge, is formulated. A computer code OMID is developed for computational analysis. The analysis shows that the cold neutral particle density is maximum near the wall, the total fuelling profile peaks in the vicinity of the wall for a molecular source more than for an atomic one, energetic neutrals formed in successive charge exchange collisions carry energy to the...
Synthesis of carbon nanotubes by a plasma based pulsed electron beam generator
Goktas, H.; Ayhan, U. B.; Gündüz, Güngör; Disbudak, H.; Eryilmaz, E.; Oke, G.; Cicek, B.; Somer, M. (IOP Publishing, 2006-01-01)
Carbon nanotubes (CNTs) were synthesized by using a plasma based electron beam generator, which has a fast filamentary discharge formed from the superposition of an ordinary low-pressure dc glow and a high-current pulsed discharge. To our knowledge, CNTs are synthesized for the first time by this method. Acetylene was used as the carbon source and the iron catalyst coated silica substrates were prepared by the sol-gel technique. The silica plates were first coated with an appropriate iron (III) nitrate solu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Dereli, M. C. Yalabık, and Ş. Ellialtıoğlu, “A computer simulation of amorphous silicon,”
Physica Scripta
, pp. 117–121, 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52085.