Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Comparative performance of ground clay brick in mitigation of alkali-silica reaction
Date
2007-12-01
Author
Bektas, Fatih
Turanlı, Lutfullah
Wang, Kejin
Ceylan, Halil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
This paper reports on a study of waste clay brick that was ground and used as a supplementary cementitious material (SCM) in a mortar. The effect of this ground brick, in comparison with other conventional pozzolanic materials (namely, a Class F fly ash, and a natural pozzolan), on the alkali-silica reaction (ASR) of the mortar was evaluated. The ground clay brick, fly ash, and natural pozzolan were introduced into the mortar as a cement replacement at a 20 or 35% level. Fly ash-natural pozzolan and fly ash-ground clay brick combinations were also employed as a cement replacement at a 35% level. These SCM-incorporated mortar samples were tested for ASR expansion, flexural and compressive strength, and rapid chloride permeability. The test results indicate that all the SCMs considered in this study reduced the mortar ASR expansion, rapid chloride permeability, and the ASR-associated strength loss. The finely ground waste clay brick demonstrated high potential to reduce the ASR expansion as well as the ASR-associated strength loss.
Subject Keywords
General Materials Science
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/52192
Journal
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
DOI
https://doi.org/10.1061/(asce)0899-1561(2007)19:12(1070)
Collections
Graduate School of Natural and Applied Sciences, Article