Variation of the elastic constants of tourmaline with chemical composition

1987-2
Elastic wave velocities and lattice parameters of five tourmaline specimens with different chemical compositions have been measured. The piezoelectric effects on the elastic constants have been found to be small and can be neglected. Variations of the elastic wave velocities and elastic constants of the different tourmaline specimens indicate that: (i) partial substitution of Al by Fe in the structure decreases the shear wave velocities, (ii) replacement of Na by Ca increases the resistance of the structure against shear deformation involving C 66, (iii) replacement of Al by Mg seems to decrease the resistance of the structure against longitudinal deformation involving C 33. Elastic constants C 11, C 33, C 44 and C 66 of the different tourmaline specimens used in this study differ individually by 1.7 percent to 6.7 percent, indicating that the large differences (up to 21%) between the values reported by previous authors cannot be explained in terms of the chemical composition alone.
Physics and Chemistry of Minerals

Suggestions

LONGITUDINAL ELASTIC-WAVE PROPAGATION AND ENERGY FLUX AT A DISCONTINUITY OF 2 DISSIMILAR SEMIINFINITE CIRCULAR RODS
Yıldırım, Raif Orhan (1994-10-01)
Elastic wave propagation through an area discontinuity of two dissimilar, bonded, semi-infinite circular rods is investigated analytically. In particular, the variations of the coefficients of stress reflection and transmission are determined in terms of the nondimensional cross sectional area and mechanical impedance parameters. The coefficients of energy flux reflection and transmission are also included. Then, the case is generalized to include a rigid mass attached at the discontinuity.
Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures
Askan Gündoğan, Ayşegül; Bielak, Jacobo; Ghattas, Omar (Seismological Society of America (SSA), 2007-12-01)
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization prob...
Effects of array guided surface waves on radiation characteristics of a finite planar printed dipole array
Aydın Çivi, Hatice Özlem; Pathak, PH (2004-06-26)
The presence of surface waves different from the conventional grounded dielectric substrate surface wave modes, which can be excited on a finite periodic radiating array of printed dipoles, at frequencies for which the spacing between dipoles is typically less than half a wavelength is studied. The effects of such array guided surface waves on the array radiation characteristics are investigated. Techniques to suppress these surface waves are also discussed.
Effect of particle shape on fall velocity of angular particles
Göğüş, Mustafa; Kokpinar, MA (2001-10-01)
In this study, fall velocities of 174 regularly shaped angular particles-namely cylindrical, cubic, wedge-shaped prisms, and box-shaped prisms-made of five different materials were measured in calm water conditions in a cylindrical settling column. Reynolds numbers based on particle fall velocity and characteristic length were varied, in the range from 10(3) to 4.2 x 10(4). A new shape factor and characteristic length were defined from a transformed form of the original particle. Variation of experimentally...
Propagation of transient out-of-plane shear waves in viscoelastic layered media
Abu-Alshaikh, I; Turhan, D; Mengi, Y (2001-12-01)
Propagation of two-dimensional transient out-of-plane shear waves in multilayered viscoelastic media is investigated. The multilayered medium consists of N different isotropic, homogeneous and linearly viscoelastic layers with more than one discrete relaxation time. The top surface of the layered medium is subjected to dynamic out-of-plane shear tractions; whereas, the lower surface is free or fixed. A numerical technique is employed to obtain the solution, which combines the Fourier transform with the meth...
Citation Formats
A. Tatli and Y. Galioğlu Özkan, “Variation of the elastic constants of tourmaline with chemical composition,” Physics and Chemistry of Minerals, pp. 172–176, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52240.