Geometric improvements on solar cells for reducing reflections

2019-07-01
KARAOSMANOGLU, BARISCAN
BICE, BEHRE NUR
Ergül, Özgür Salih
We present horn-shaped cavities in order to improve the efficiency of energy harvesting in solar cells with traditional materials. Nano-cavities, which are already used for this purpose in the literature, are generally based on the principles of ray optics, while their sizes are in fact comparable to wavelength. Inspired by their effectiveness at radio and microwave frequencies, we design horn-shaped cavities that can effectively trap light and reduce reflections. Based on electromagnetic responses of initial structures, horn geometries are further optimized to minimize reflections and improve absorption efficiency. Numerical results demonstrate excellent performances of the designed cavities, which may even eliminate need for matching layers

Suggestions

Improvement of multiband absorption with different technics (graphene, ito, and hole) for metamaterial absorber at optical frequencies
Mulla, Batuhan; Sabah, Cumali (2018-10-01)
Three absorption improvement techniques are numerically applied to a multiband metamaterial absorber design for solar energy harvesting. These techniques are the following: the reshaping of the back metallic plate, the integrating of graphene sheets, and the utilizing of indium tin oxide (ITO), in the design. Based on numerical simulation results, each of these methods has the capacity to enhance total absorption rates. In addition to the enhancement in the total absorption rates, new absorption peaks are a...
Organic bulk heterojunction solar cells based on benzodithiophene and benzothiadiazole containing conjugated polymers
Toppare, Levent Kamil; Bolayır, Eda; Ünal, Özlem; Çırpan, Ali; Taşkaya Aslan, Sultan (null; 2018-07-06)
Organic photovoltaics (OPVs) or so-called organic solar cells particularly hold promise for manufacturing solar energy due to their advantages in low cost and production processes. In order to understand and improve the performance of OPVs, intense efforts have been dedicated around the world [1]. In particular, conjugated polymers are attractive for OPVs due to the π-conjugated systems in the polymer backbone which generates and transport the charge carriers [2]. Therefore, the design and synthesis of nove...
Optimal and implementable transmission schemes for energy harvesting networks
Özçelik, Fatih Mehmet; Uysal Bıyıkoğlu, Elif; Department of Electrical and Electronics Engineering (2012)
Progress in energy harvesting technology and the increasing need for the energy efficient and environmentally friendly applications have called for reconsideration of communication systems. This reconsideration results in new problem formulations regarding the recent developments on energy harvesting systems. Recently, optimal strategies for various types of energy harvesting networks have been developed based on different harvesting models. This thesis reports the results of our research to develop the opt...
Adsorption properties of boron nitride nanotubes
Khan, Saeed Ahmad; Sezgi, Naime Aslı; Balcı, Fatma Suna; Department of Chemical Engineering (2016)
The developments in nanotechnology in last decades have provided use of nanoparticles for many applications in various areas such as electronics, fuel cells, composites, cosmetics, and biomedical. They have excellent mechanical, thermal, and electrical properties. Nanotechnology is one of the fastest growing areas in materials and engineering science and biotechnology. Nanotubes have been one of the most regarded and studied type of nanoparticles up to now. Boron nitride nanotubes (BNNTs) are an important m...
Nanowire-based multifunctional antireflection coatings for solar cells
Hiralal, Pritesh; Chien, Chihtao; Lal, Niraj N.; Abeygunasekara, Waranatha; Kumar, Abhishek; Butt, Haider; Zhou, Hang; Ünalan, Hüsnü Emrah; Baumberg, Jeremy J.; Amaratunga, Gehan A. J. (2014-01-01)
Organic (P3HT/PCBM) solar cells are coated with ZnO nanowires as antireflection coatings and show up to 36% enhancement in efficiency. The improvement is ascribed to an effective refractive index which results in Fabry-Perot absorption bands which match the polymer band-gap. The effect is particularly pronounced at high light incidence angles. Simultaneously, the coating is used as a UV-barrier, demonstrating a 50% reduction in the rate of degradation of the polymers under accelerated lifetime testing. The ...
Citation Formats
B. KARAOSMANOGLU, B. N. BICE, and Ö. S. Ergül, “Geometric improvements on solar cells for reducing reflections,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52259.