Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical solution of thermally developing microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects
Download
10.1016j.icheatmasstransfer.2015.05.004.pdf
Date
2015-10
Author
Barışık, Murat
Yazıcıoğlu, Almıla Güvenç
Çetin, Barbaros
Kakaç, Sadık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
125
downloads
Cite This
The solution of extended Graetz problem for micro-scale gas flows is performed by coupling of rarefaction, axial conduction and viscous dissipation at slip flow regime. The analytical coupling achieved by using Gram-Schmidt orthogonalization technique provides interrelated appearance of corresponding effects through the variation of non-dimensional numbers. The developing temperature field is determined by solving the energy equation locally together with the fully developed flow profile. Analytical solutions of local temperature distribution, and local and fully developed Nusselt number are obtained in terms of dimensionless parameters: Peclet number, Knudsen number, Brinkman number, and the parameter Kappa accounting temperature-jump. The results indicate that the Nusselt number decreases with increasing Knudsen number as a result of the increase of temperature jump at the wall. For low Peclet number values, temperature gradients and the resulting temperature jump at the pipe wall cause Knudsen number to develop higher effect on flow. Axial conduction should not be neglected for Peclet number values less than 100 for all cases without viscous dissipation, and for short pipes with viscous dissipation. The effect of viscous heating should be considered even for small Brinkman number values with large length over diameter ratios. For a fixed Kappa value, the deviation from continuum increases with increasing rarefaction, and Nusselt number values decrease with an increase in Knudsen number.
Subject Keywords
Atomic and Molecular Physics, and Optics
,
General Chemical Engineering
,
Condensed Matter Physics
,
Extended Graetz problem
,
Micropipe heat transfer
,
Slip flow
,
Rarefaction effect
,
Axial conduction
,
Viscous dissipation
URI
https://hdl.handle.net/11511/52341
Journal
International Communications in Heat and Mass Transfer
DOI
https://doi.org/10.1016/j.icheatmasstransfer.2015.05.004
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Fluid flow in microtubes with axial conduction including rarefaction and viscous dissipation
Cetin, Barbaros; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (Elsevier BV, 2008-05-01)
Graetz problem inside the microtube is revisited considering rarefaction effect, viscous dissipation term and axial conduction in the fluid for uniform wall temperature boundary condition in the slip flow regime. The flow is assumed to be hydrodynamically fully developed, thermally developing, and the velocity profile is solved analytically. The temperature field is determined by the numerical solution of the energy equation. The rarefaction effect is imposed to the problem via velocity-slip and temperature...
Evaluation of nusselt number for a flow in a microtube with constant heat flux including axial conduction, viscous dissipation and second-order slip model
Çetin, Barbaros; Bayer, Özgür (2010-09-28)
In this paper, the fully-developed temperature profile and corresponding Nusselt value is determined analytically for a gaseous flow in a microtube with a thermal boundary condition of constant wall heat flux. The flow assumed to be laminar, and hydrodynamically and thermally fully developed. The fluid is assumed to be constant property and incompressible. The effect of rarefaction, viscous dissipation and axial conduction, which are important at the microscale, are i...
Numerical Solution of MHD Incompressible Convection Flow in Channels
Gurbuz, Merve; Tezer, Münevver (2019-1-01)
The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and tempera...
Computational Modeling of the Effects of Viscous Dissipation on Polymer Melt Flow Behavior During Injection Molding Process in Plane Channels
Tutar, M.; Karakuş, Ali (2013-02-01)
The present finite volume method based fluid flow solutions investigate the boundary-layer flow and heat transfer characteristics of polymer melt flow in a rectangular plane channel in the presence of the effect of viscous dissipation and heat transfer by considering the viscosity and density variations in the flow. For different inflow velocity boundary conditions and the injection polymer melt temperatures, the viscous dissipation effects on the velocity and temperature distributions are studied extensive...
ROUGHNESS EFFECT ON THE HEAT TRANSFER COEFFICIENT FOR GASEOUS FLOW IN MICROCHANNELS
Turgay, Metin B.; Güvenç Yazıcıoğlu, Almıla; Kakac, Sadik (2010-08-13)
Effects of surface roughness, axial conduction, viscous dissipation, and rarefaction on heat transfer in a two dimensional parallel plate microchannel with constant wall temperature are investigated numerically. Roughness is simulated by adding equilateral triangular obstructions with various heights on one of the plates. Air, with constant thermophysical properties, is chosen as the working fluid, and laminar, single-phase, developing flow in the slip flow regime at steady state is analyzed. Governing equa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Barışık, A. G. Yazıcıoğlu, B. Çetin, and S. Kakaç, “Analytical solution of thermally developing microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects,”
International Communications in Heat and Mass Transfer
, pp. 81–88, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52341.