Singlet Exciton Fission for Solar Cell Applications Energy Aspects of Interchromophore Coupling

2010-11-01
Greyson, Eric C.
Stepp, Brian R.
Chen, Xudong
Schwerin, Andrew F.
Paci, Irina
Smith, Millicent B.
Akdağ, Akın
Johnson, Justin C.
Nozik, Arthur J.
Michl, Josef
Ratner, Mark A.
Singlet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules Previous studies have identified promising building blocks for singlet fission in molecular systems but little work has investigated how these individual chromophores should be combined to maximize triplet yield We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield We use density functional theory to compute the electron transfer matrix element and the thermodynamics of fission for several promising chromophore pairs and find a trade-off between the desire to maximize this element and the desire to keep the singlet fission process exoergic We identify promising molecular systems for singlet fission and suggest future experiments
JOURNAL OF PHYSICAL CHEMISTRY B

Suggestions

Dielectric and Thermal Effects on the Optical Properties of Natural Dyes: A Case Study on Solvated Cyanin
Malcıoğlu, Osman Barış; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano (2011-10-05)
The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Descri...
Angle of graph energy - A spectral measure of resemblance of isomeric molecules
Gutman, I; Türker, Burhan Lemi (2003-11-01)
A method, elaborated earlier by one of the present authors, for measuring the structural resemblance of isomeric alternant conjugated hydrocarbons, based on a graph-spectral quantity theta, called the angle of total pi-electron energy approach has been extended now to arbitrary molecules. Some general properties of theta have been established.
Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane
Karahan, Senem; Özkar, Saim (2015-02-09)
Herein, we report the in situ generation, isolation and characterization of cobalt(0) nanoparticles, stabilized by poly(4-styrenesulfonic acid-co-maleic acid), PSSMA, and their catalytic activity in the hydrolysis of hydrazine borane (HB). Cobalt(0) nanoparticles having average particle size of 3.1 +/- 0.5 nm were prepared by in situ reduction of cobalt(II) chloride in aqueous solution of hydrazine borane in the presence of PSSMA, isolated magnetically from the catalytic reaction solution using a magnet, an...
Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (2010-01-01)
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number kappa under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The energy eigenvalues are calculated numerically.
ELECTROINITIATED POLYMERIZATION OF ACROLEIN BY DIRECT AND INDIRECT ELECTRON-TRANSFER VIA CONTROLLED POTENTIAL ELECTROLYSIS
Toppare, Levent Kamil; Akbulut, Ural (Informa UK Limited, 1990-01-01)
Electroinitiated polymerization of acrolein has been achieved by controlled potential electrolysis at the reduction peak potential of the monomer for direct electron transfer. Kinetics and type of mechanism of the polymerization have been investigated. the structure of the polymer has also been examined by IR spectroscopy. in a separate experiment, a small amount of CCI4 was added to a polymerization system. Since the reduction peak potential of CCI4 appears at a more anodic region than that of acrolein on ...
Citation Formats
E. C. Greyson et al., “Singlet Exciton Fission for Solar Cell Applications Energy Aspects of Interchromophore Coupling,” JOURNAL OF PHYSICAL CHEMISTRY B, pp. 14223–14232, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52385.