Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem.
Date
2011-01-01
Author
Gavgani, Alireza Mazloumi
Serinağaoğlu Doğrusöz, Yeşim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Tikhonov regularization is one of the most widely used regularization approaches in literature to overcome the ill-posedness of the inverse electrocardiography problem. However, the resulting solutions are biased towards the constraint used for regularization. One alternative to obtain improved results is to employ multiple constraints in the cost function. This approach has been shown to produce better results; however finding appropriate regularization parameters is a serious limitation of the method. In this study, we propose estimating multiple regularization parameters using a genetic algorithm based approach. Applicability of the approach is demonstrated here using two and three constraints. The results show that GA based multiple constraints approach improves the Tikhonov regularization solutions.
Subject Keywords
POSED PROBLEMS
,
L-CURVE
,
ELECTROCARDIOGRAPHY
URI
https://hdl.handle.net/11511/52535
Journal
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Collections
Department of Electrical and Electronics Engineering, Article