Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical solution of nonlinear reaction-diffusion and wave equations
Download
index.pdf
Date
2009
Author
Meral, Gülnihal
Metadata
Show full item record
Item Usage Stats
84
views
36
downloads
Cite This
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problems defined by the nonlinear reaction-diffusion and wave equations. The DRBEM and DQM applications result in first and second order system of ordinary differential equations in time. These systems are solved with three different time integration methods, the finite difference method (FDM), the least squares method (LSM) and the finite element method (FEM) and comparisons among the methods are made. In the FDM a relaxation parameter is used to smooth the solution between the consecutive time levels. It is found that DRBEM+FEM procedure gives better accuracy for the IBVPs defined by nonlinear reaction-diffusion equation. The DRBEM+LSM procedure with exponential and rational radial basis functions is found suitable for exterior wave problem. The same result is also valid when DQM is used for space discretization instead of DRBEM for Cauchy and IBVPs defined by nonlinear reaction-diffusion and wave equations.
Subject Keywords
Mathematics.
,
Wave equations, Invariant.
URI
http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf
https://hdl.handle.net/11511/18786
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Spatial behavior estimates for the wave equation under nonlinear boundary conditions
Celebi, AO; Kalantarov, VK (2001-09-01)
Our aim is to establish a spatial decay and growth estimates for solutions of the initial-boundary value problem for the linear wave equation with the damping term under nonlinear boundary conditions.
Effective-mass Klein-Gordon-Yukawa problem for bound and scattering states
Arda, Altug; Sever, Ramazan (2011-09-01)
Bound and scattering state solutions of the effective-mass Klein-Gordon equation are obtained for the Yukawa potential with any angular momentum l. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated as well as for the constant mass case. Bound state solutions of the Coulomb potential are also studied as a limiting case. Analytical and numerical results are compared with the ones obtained before. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641246]
Analytical modeling of nonlinear evolution of long waves
Aydın, Baran; Kanoğlu, Utku (2015-06-22)
We present an initial-boundary value problem formulation for the solution of the nonlinear shallow-water wave (NSW) equations. We transform the nonlinear equations into a linear problem by using the Carrier-Greenspan transformation. Then, we obtain the solution through the separation of variables method rather than integral transform techniques, which is the usual practice (Carrier et al., J Fluid Mech 2003; Kanoglu, J Fluid Mech 2004). This formulation allows the use of any physically realistic initial wav...
Periodic solutions and stability of differential equations with piecewise constant argument of generalized type
Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Meral, “Numerical solution of nonlinear reaction-diffusion and wave equations,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.