Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification

2011-01-29
A new walking pattern classification method is proposed for uneven floor walking of 5-link 7 DOF biped robot. This method extracts the patterns as per the stance foot's current floor position and swing foot's transitioning floor conditions during locomotion. When a global path composed of stairs, obstacles, etc. and certain walking parameters, such as the speed of walking and total walking time, are given to the system, the guidance controller unit determines footstep trajectory in terms of step patterns by using a genetic algorithm based optimization technique while ensuring biped's stability criterion. The demonstration of biped for different pattern classes is realized by a dynamic simulator.

Suggestions

Toward the enhancement of biped locomotion and control techniques:walking pattern classifi cation
Yuksel, Basak; Leblebicioğlu, Mehmet Kemal (2011-01-01)
A new walking pattern classification method is proposed for a 5-link 7-DOF biped robot walking on an uneven floor. This method extracts the patterns in the current floor position of the stance foot and the transitioning floor conditions of the swing foot during locomotion. When a global path composed of stairs, obstacles, etc., and certain walking parameters, such as the speed of walking and the total walking time, are put into the system, the guidance controller unit determines the trajectory of the footst...
Identification of a vertical hopping robot model via harmonic transfer functions
Uyanik, Ismail; Ankaralı, Mustafa Mert; Cowan, Noah J.; Saranlı, Uluç; Morgul, Omer (2016-05-01)
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into the model is challenging, increases complexity, and decreases the ana...
Analysis of wave gaits for energy efficiency
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2007-10-01)
In this paper an energy efficiency analysis of wave gaits is performed for a six-legged walking robot. A simulation model of the robot is used to obtain the data demonstrating the energy consumption while walking in different modes and with varying parameters. Based on the analysis of this data some strategies are derived in order to minimize the search effort for determining the parameters of the gaits for an energy efficient walk. Then, similar data is obtained from an actual experimental setup, in which ...
Dynamic Modeling and Control of Underactuated Planar Bipedal Walking
Sovukluk, Sait; Ankaralı, Mustafa Mert; Saranlı, Uluç; Department of Electrical and Electronics Engineering (2022-6-16)
This study demonstrates an adaptive model predictive control method for input constrained control of underactuated bipedal walking with a predefined trajectory. Our approach aims to increase the trajectory tracking performance of the system and produce realistic and applicable responses while letting a certain amount of posture change around the predefined trajectory. To do so, we employ whole-body dynamics in our control structure, include weights for the unactuated joint inside the cost function, and defi...
Stability of Planar Compass Gait Walking with Series Elastic Ankle Actuation
Kerimoğlu, Deniz; Morgül, Ömer; Saranlı, Uluç (null; 2015-07-24)
Passive dynamic walking models capture the natural dynamics of stable human-like walking. The passive compass gait (PCG) model, consisting of a point mass and two rigid legs, is among the simplest of such models. The fully passive nature of these models, however, necessitates a sloped ground to recover the energy lost during the ground collisions [1]. A variety of methods have been proposed to eliminate this requirement through different actuation methods. Among these are impulsive energy injection after fo...
Citation Formats
B. Yuksel and M. K. Leblebicioğlu, “Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52658.