Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification

A new walking pattern classification method is proposed for uneven floor walking of 5-link 7 DOF biped robot. This method extracts the patterns as per the stance foot's current floor position and swing foot's transitioning floor conditions during locomotion. When a global path composed of stairs, obstacles, etc. and certain walking parameters, such as the speed of walking and total walking time, are given to the system, the guidance controller unit determines footstep trajectory in terms of step patterns by using a genetic algorithm based optimization technique while ensuring biped's stability criterion. The demonstration of biped for different pattern classes is realized by a dynamic simulator.


Identification of a vertical hopping robot model via harmonic transfer functions
Uyanik, Ismail; Ankaralı, Mustafa Mert; Cowan, Noah J.; Saranlı, Uluç; Morgul, Omer (2016-05-01)
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into the model is challenging, increases complexity, and decreases the ana...
Dynamic Modeling and Control of Underactuated Planar Bipedal Walking
Sovukluk, Sait; Ankaralı, Mustafa Mert; Saranlı, Uluç; Department of Electrical and Electronics Engineering (2022-6-16)
This study demonstrates an adaptive model predictive control method for input constrained control of underactuated bipedal walking with a predefined trajectory. Our approach aims to increase the trajectory tracking performance of the system and produce realistic and applicable responses while letting a certain amount of posture change around the predefined trajectory. To do so, we employ whole-body dynamics in our control structure, include weights for the unactuated joint inside the cost function, and defi...
Stability of Planar Compass Gait Walking with Series Elastic Ankle Actuation
Kerimoğlu, Deniz; Morgül, Ömer; Saranlı, Uluç (null; 2015-07-24)
Passive dynamic walking models capture the natural dynamics of stable human-like walking. The passive compass gait (PCG) model, consisting of a point mass and two rigid legs, is among the simplest of such models. The fully passive nature of these models, however, necessitates a sloped ground to recover the energy lost during the ground collisions [1]. A variety of methods have been proposed to eliminate this requirement through different actuation methods. Among these are impulsive energy injection after fo...
Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control
Pouya, Soha; Aydın Göl, Ebru; Moeckel, Rico; Ijspeert, Auke Jan (2011-01-01)
This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and ...
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
Citation Formats
B. Yuksel and M. K. Leblebicioğlu, “Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification,” 2011, Accessed: 00, 2020. [Online]. Available: