Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification
Date
2011-01-29
Author
Yuksel, Basak
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
0
downloads
Cite This
A new walking pattern classification method is proposed for uneven floor walking of 5-link 7 DOF biped robot. This method extracts the patterns as per the stance foot's current floor position and swing foot's transitioning floor conditions during locomotion. When a global path composed of stairs, obstacles, etc. and certain walking parameters, such as the speed of walking and total walking time, are given to the system, the guidance controller unit determines footstep trajectory in terms of step patterns by using a genetic algorithm based optimization technique while ensuring biped's stability criterion. The demonstration of biped for different pattern classes is realized by a dynamic simulator.
Subject Keywords
Walking pattern classification
,
Biped locomotion
,
Uneven floor walking
URI
https://hdl.handle.net/11511/52658
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Toward the enhancement of biped locomotion and control techniques:walking pattern classifi cation
Yuksel, Basak; Leblebicioğlu, Mehmet Kemal (2011-01-01)
A new walking pattern classification method is proposed for a 5-link 7-DOF biped robot walking on an uneven floor. This method extracts the patterns in the current floor position of the stance foot and the transitioning floor conditions of the swing foot during locomotion. When a global path composed of stairs, obstacles, etc., and certain walking parameters, such as the speed of walking and the total walking time, are put into the system, the guidance controller unit determines the trajectory of the footst...
Identification of a vertical hopping robot model via harmonic transfer functions
Uyanik, Ismail; Ankaralı, Mustafa Mert; Cowan, Noah J.; Saranlı, Uluç; Morgul, Omer (2016-05-01)
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into the model is challenging, increases complexity, and decreases the ana...
Analysis of wave gaits for energy efficiency
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2007-10-01)
In this paper an energy efficiency analysis of wave gaits is performed for a six-legged walking robot. A simulation model of the robot is used to obtain the data demonstrating the energy consumption while walking in different modes and with varying parameters. Based on the analysis of this data some strategies are derived in order to minimize the search effort for determining the parameters of the gaits for an energy efficient walk. Then, similar data is obtained from an actual experimental setup, in which ...
Dynamic Modeling and Control of Underactuated Planar Bipedal Walking
Sovukluk, Sait; Ankaralı, Mustafa Mert; Saranlı, Uluç; Department of Electrical and Electronics Engineering (2022-6-16)
This study demonstrates an adaptive model predictive control method for input constrained control of underactuated bipedal walking with a predefined trajectory. Our approach aims to increase the trajectory tracking performance of the system and produce realistic and applicable responses while letting a certain amount of posture change around the predefined trajectory. To do so, we employ whole-body dynamics in our control structure, include weights for the unactuated joint inside the cost function, and defi...
Stability of Planar Compass Gait Walking with Series Elastic Ankle Actuation
Kerimoğlu, Deniz; Morgül, Ömer; Saranlı, Uluç (null; 2015-07-24)
Passive dynamic walking models capture the natural dynamics of stable human-like walking. The passive compass gait (PCG) model, consisting of a point mass and two rigid legs, is among the simplest of such models. The fully passive nature of these models, however, necessitates a sloped ground to recover the energy lost during the ground collisions [1]. A variety of methods have been proposed to eliminate this requirement through different actuation methods. Among these are impulsive energy injection after fo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yuksel and M. K. Leblebicioğlu, “Towards the Enhancement of Biped Locomotion and Control Techniques - Walking Pattern Classification,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52658.