Utilization of False Color Images in Shadow Detection

Shadows are illuminated as a result of Rayleigh scattering phenomenon, which happens to be more effective for small wavelengths of light. We propose utilization of false color images for shadow detection, since the transformation eliminates high frequency blue component and introduces low frequency near-infrared channel. Effectiveness of the approach is tested by using several shadow-variant texture and colorrelated cues proposed in the literature. Performances of these cues in regular and false color images are compared and analyzed within a supervised system by using a support vector machine classifier.


Broadband Spectral Splitting of Light Using Wavefront Shaping
Gün, Berk Nezir; Yüce, Emre (2018-09-12)
When the dimensions of a medium are comparable to wavelength of light, diffraction plays a major role in wave propagation and it differs by wavelength. Thus, it is possible to obtain intended phase difference for each frequency by changing the thickness or refractive index of the medium [1]. As a result, waves at a specific frequency can be controlled to constructively interfere at a desired point. Liquid crystal displays, which enable to control refractive indices of each pixels via modulating the ampl...
An Improved Nanoscale Texturing for Multicrystalline Si Solar Cells by Metal Assisted Etching
Es, Fırat; Turan, Raşit (null; 2017-12-01)
With its indirect band structure and good reflecting properties, Si is a poor absorber particularly in the infrared part of the light spectrum. Thanks to surface texturing technologies, management of light using surface structures at micro and nanometer scale can significantly improve absorption and photocurrent generation. Surface texturing is typically done by alkaline based solutions for monocrystalline Si. Pyramid structures formed by this process provides an optimum condition for minimizing the reflect...
Properties of light emitting diodes following cobalt-60 irridiation
Özcan, Şafak; Günal, İbrahim; Department of Physics (2004)
The main purpose of this study is to investigate the effects of gamma radiation on the properties of the light emitting diodes. GaP and GaAsP LEDs are used in the study. It is observed that the exposure of a light emitting diode affects its various properties. A cobalt-60 gamma-cell is used to irradiate the selected light emitting diodes. For the different total doses of gamma pre-irradiation and post-irradiation I-V characteristics and spectral responses are recorded. The capacitance characteristics are me...
Design and implementation of an open-source optically stimulated luminescence measurement system
Maraba, Diren; Bulur, Enver; Department of Physics (2017)
Optically Stimulated Luminescence (OSL) is the light emission from an irradiated solid (insulator or a wide band gap semiconductor) upon illumination with light of suitable wavelength. Although the phenomenon has been known for a long time, OSL has emerged as a practically applicable dosimetry technique in the past two decades. Recently introduced materials like alumina and beryllia have found use in the field of radiation dosimetry. The purpose of this study is to design and construct a simple multi-sample...
High performance short wavelength infrared focal plane arrays
Çırçır, Kübra; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2017)
Short Wavelength Infrared (SWIR) band is desirable for many applications such as night vision, spectroscopy and hyperspectral imaging. Indium Gallium Arsenide (In0.53Ga0.47As) is a suitable material for SWIR photodetectors. This thesis focuses on the investigation of the pixel characteristics of a 15 µm pitch large format (640x512) focal plane array (FPA) with In0.53Ga0.47As absorber and Al0.52In0.48As p-type cap layers as an alternative to the conventional In0.53Ga0.47As detectors utilizing InP as the p-ca...
Citation Formats
Y. Aksoy and A. A. Alatan, “Utilization of False Color Images in Shadow Detection,” 2012, vol. 7584, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52665.