Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Posterior Cram'er-Rao Lower Bounds for Extended Target Tracking with Random Matrices
Date
2016-07-08
Author
Sarıtaş, Elif
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
304
views
0
downloads
Cite This
This paper presents posterior Cram'er-Rao lower bounds (PCRLB) for extended target tracking (ETT) when the extent states of the targets are represented with random matrices. PCRLB recursions are derived for kinematic and extent states taking complicated expectations involving Wishart and inverse Wishart distributions. For some analytically intractable expectations, Monte Carlo integration is used. The bounds for the semi-major and minor axes of the extent ellipsoid are obtained as well as those for the extent matrix elements. The resulting bounds are compared on simulations with the performance of a state-of-the-art ETT algorithm employing random matrices for extent estimation.
Subject Keywords
Object tracking
,
PMHT
URI
https://hdl.handle.net/11511/52676
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Posterior Cramér-Rao lower bounds for extended target tracking with random matrices
Sarıtaş, Elif; Orguner, Umut (2016-08-04)
This paper presents posterior Cramér-Rao lower bounds (PCRLB) for extended target tracking (ETT) when the extent states of the targets are represented with random matrices. PCRLB recursions are derived for kinematic and extent states taking complicated expectations involving Wishart and inverse Wishart distributions. For some analytically intractable expectations, Monte Carlo integration is used. The bounds for the semi-major and minor axes of the extent ellipsoid are obtained as well as those for the exten...
Interacting multiple model probabilistic data association filter using random matrices for extended target tracking
Özpak, Ezgi; Orguner, Umut; Department of Electrical and Electronics Engineering (2018)
In this thesis, an Interacting Multiple Model – Probabilistic Data Association (IMM-PDA) filter for tracking extended targets using random matrices is proposed. Unlike the extended target trackers in the literature which use multiple alternative partitionings/clusterings of the set of measurements, the algorithm proposed here considers a single partitioning/clustering of the measurement data which makes it suitable for applications with low computational resources. When the IMM-PDA filter uses clustered mea...
Variational smoothing for extended target tracking with random matrices
Kartal, Savaş Erdem; Orguner, Umut; Department of Electrical and Electronics Engineering (2022-4-05)
In this thesis, two Bayesian smoothers are proposed for random matrix based extended target tracking (ETT). The proposed smoothers are based on the variational Bayes techniques and they are derived for an extended target model without and with orientation. The random matrix models of Feldman et al. and Tuncer and Özkan are used as the extended target models without and with orientation, respectively. The performance of both smoothers is evaluated using simulation results on two different scenarios. It is se...
Random Matrix Based Extended Target Tracking with Orientation: A New Model and Inference
Tuncer, Barkın; Özkan, Emre (2021-02-01)
In this study, we propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle. A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework where the diagonal elements have inverse-Gamma priors. The resulting measurement equation is non-linear in the state variables, and it is not possible to find a closed-form analytical expression for the true poste...
Multi-Ellipsoidal Extended Target Tracking With Variational Bayes Inference
Tuncer, Barkın; Orguner, Umut; Özkan, Emre (2022-01-01)
In this work, we propose a novel extended target tracking algorithm, which is capable of representing a target or a group of targets with multiple ellipses. Each ellipse is modeled by an unknown symmetric positive-definite random matrix. The proposed model requires solving two challenging problems. First, the data association problem between the measurements and the sub-objects. Second, the inference problem that involves non-conjugate priors and likelihoods which needs to be solved within the recursive fil...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sarıtaş and U. Orguner, “Posterior Cram’er-Rao Lower Bounds for Extended Target Tracking with Random Matrices,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52676.