VARIABLE-COEFFICIENT 3RD-ORDER KORTEWEG-DEVRIES TYPE EQUATIONS

1995-07-01
GURSES, M
Karasu, Atalay
It is shown that the integrable subclasses of the equations q(,t)=f(x,t)q(,3) +H(x,t,q,q(,1)) are the same as the integrable subclasses of the equations q(,t)=q(,3) +F(q,q(,1)). (C) 1995 American Institute of Physics.
JOURNAL OF MATHEMATICAL PHYSICS

Suggestions

SHIFTED 1/N EXPANSION FOR THE KLEIN-GORDON EQUATION WITH VECTOR AND SCALAR POTENTIALS
MUSTAFA, O; Sever, Ramazan (1991-10-01)
The shifted 1/N expansion method has been extended to solve the Klein-Gordon equation with both scalar and vector potentials. The calculations are carried out to the third-order correction in the energy series. The analytical results are applied to a linear scalar potential to obtain the relativistic energy eigenvalues. Our numerical results are compared with those obtained by Gunion and Li [Phys. Rev. D 12, 3583 (1975)].
Painleve classification of coupled Korteweg-de Vries systems
Karasu, Emine Ayşe (1997-07-01)
In this work, we give a classification of coupled Korteweg-de Vries equations. We found new systems of equations that are completely integrable in the sense of Painleve. (C) 1997 American Institute of Physics.
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
The Laguerre pseudospectral method for the radial Schrodinger equation
ALICI, HAYDAR; Taşeli, Hasan (2015-01-01)
By transforming dependent and independent variables, radial Schrodinger equation is converted into a form resembling the Laguerre differential equation. Therefore, energy eigenvalues and wavefunctions of M-dimensional radial Schrodinger equation with a wide range of isotropic potentials are obtained numerically by using Laguerre pseudospectral methods. Comparison with the results from literature shows that the method is highly competitive. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
Color engineering of π-conjugated donor-acceptor systems : the role of donor and acceptor units on the neutral state color
Ünal, Gönül; Karasu, Atalay; Department of Physics (2011)
In this thesis, we investigate the integrability properties of some evolutionary type nonlinear equations in (1+1)-dimensions both with commutative and non-commutative variables. We construct the recursion operators, based on the Lax representation, for such equations. Finally, we question the notion of integrability for a certain one-component non-commutative equation. [We stress that calculations in this thesis are not original.]
Citation Formats
M. GURSES and A. Karasu, “VARIABLE-COEFFICIENT 3RD-ORDER KORTEWEG-DEVRIES TYPE EQUATIONS,” JOURNAL OF MATHEMATICAL PHYSICS, pp. 3485–3491, 1995, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52759.