Color engineering of π-conjugated donor-acceptor systems : the role of donor and acceptor units on the neutral state color

Download
2011
Ünal, Gönül
In this thesis, we investigate the integrability properties of some evolutionary type nonlinear equations in (1+1)-dimensions both with commutative and non-commutative variables. We construct the recursion operators, based on the Lax representation, for such equations. Finally, we question the notion of integrability for a certain one-component non-commutative equation. [We stress that calculations in this thesis are not original.]

Suggestions

An Application of the rayleigh-ritz method to the integral-equation representation of the one-dimensional schrödinger equation
Kaya, Ruşen; Taşeli, Hasan; Department of Mathematics (2019)
In this thesis, the theory of the relations between differential and integral equations is analyzed and is illustrated by the reformulation of the one-dimensional Schrödinger equation in terms of an integral equation employing the Green’s function. The Rayleigh- Ritz method is applied to the integral-equation formulation of the one-dimensional Schrödinger equation in order to approximate the eigenvalues of the corresponding singular problem within the desired accuracy. The outcomes are compared with those r...
Periodic solutions and stability of differential equations with piecewise constant argument of generalized type
Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Implementation of the equivalence principle algorithm for potential integral equations
Farshkaran, Ali; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2018)
In this thesis, a domain decomposition method based on the Huygens' principle for integral equations is studied. Step-by-step development of equivalence principle algorithm (EPA) is described for solving arbitrary shaped perfect electric conductor (PEC) and penetrable objects. The main advantage of EPA is its efficiency thanks to the enhanced conditioning hence accelerated iterative solutions of the matrix equations derived from discretizations. For further enhancing the efficiency, the multilevel fast mult...
Oscillatory behavior of integro-dynamic and integral equations on time scales
Grace, S. R.; Zafer, Ağacık (2014-02-01)
By making use of asymptotic properties of nonoscillatory solutions, the oscillation behavior of solutions for the integro-dynamic equation
Citation Formats
G. Ünal, “ Color engineering of π-conjugated donor-acceptor systems : the role of donor and acceptor units on the neutral state color ,” M.S. - Master of Science, Middle East Technical University, 2011.