Thermal and mechanical properties of poly(methyl methacrylate) used as dental base material

1998-08-15
Usanmaz, Ali
Turker, F
Dogan, A
Akkas, N
The thermal and mechanical properties of poly( methyl methacrylate) prepared at different curing times were studied using DSC, TGA, tensile, and three-point bending test methods. The molecular weights of the polymer samples were determined from the viscosity measurements. The curing time applied for two different commercial materials, manufactured for dental use, ranged from 15 to 180 min. The samples cured for 15 and 20 min were soluble in chloroform completely, but the others were partially soluble. The insoluble fraction increased with curing time but the molecular weight of the soluble fraction remained constant. DSC thermograms showed further curing of the samples cured for 15 and 20 min. After curing for 180 min and/or annealing at room temperature for about 13 months, the samples were completely crosslinked. The characteristic values obtained from the tensile and the three-point bending tests were similar for samples cured at different times. (C) 1998 John Wiley & Sons, Inc.
JOURNAL OF APPLIED POLYMER SCIENCE

Suggestions

Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay
Ozdemir, Esra; Hacaloğlu, Jale (2018-01-01)
In this study, electrospun fibers of melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)-PEG blends involving 10, 15 and 20 wt% PEG and their corresponding composites with organically modified montmorillonite, Cloisite 30B were prepared and characterized by x-ray diffraction, differential scanning calorimetry, thermogravimetry and direct pyrolysis mass spectrometry techniques. The narrower fiber diameters observed for the PLA-PEG fibers involving organoclay compared to the corresponding neat fib...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Thermal, kinetics, and oxidation mechanism studies of light crude oils in limestone and sandstone matrix using TG-DTG-DTA: Effect of heating rate and mesh size
Varfolomeev, Mikhail A.; Nurgaliev, Danis K.; Kök, Mustafa Verşan (2016-01-01)
This research was focused on the combustion kinetics and oxidation mechanisms of light crude oils in limestone and sandstone matrices. Similarity of the TGA-DTA curves was produced for different crude oils + limestone or sandstone mixtures indicates that the crude oil undergoes three major transitions, known as low-temperature oxidation, fuel deposition, and high-temperature oxidation when subjected to an oxidizing and constant rate environment. Kinetic analysis of the low- and high-temperature oxidation re...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Citation Formats
A. Usanmaz, F. Turker, A. Dogan, and N. Akkas, “Thermal and mechanical properties of poly(methyl methacrylate) used as dental base material,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 1409–1417, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52796.