Entropy generation analysis and dimensional optimization of an evaporator for use in a microscale refrigeration cycle

2015-08-01
Entropy generation in the evaporator of a microscale vapor compression refrigeration cycle is investigated under the effects of vapor quality, mass and heat flux, saturation temperature, and channel dimensions. For a variety of channel heights and mass flow rates, the optimum vapor quality, and the channel and fin widths yielding minimum entropy generation are obtained. The variation of heat transfer coefficient with vapor quality, and pressure drop with heat flux compare very well with literature. The vapor quality yielding the minimum entropy generation is found as 0.846. The optimum channel and fin widths are 66 and 50 mu m, respectively, for 700 mu m channel height. Heat transfer is the major source of the total entropy production for 200-400 mu m wide channels, while the contribution of pressure drop becomes comparable for narrower channels. The study is unique in the literature in pursuing an entropy generation minimization study for microscale two-phase flow.
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID

Suggestions

Entropy generation analysis of a microchannel-condenser for use in a vapor compression refrigeration cycle
Turkakar, Goker; Okutucu Özyurt, Hanife Tuba; Kandlikar, Satish G. (2016-10-01)
Dimensionless entropy generation number in the microchannel condenser of a vapor compression refrigeration cycle is investigated. An air cooled, brazed aluminum parallel flow heat exchanger is considered as the condenser with R-134a as the refrigerant. While the effects of the fin pitch, fin height, louver angle and the air mass flow rate are investigated for the air side, the effect of the channel diameter is examined for the refrigerant side. The analysis is performed segment by segment for the superheate...
Design, optimization and testing of micro-evaporator and micro-condenser components used in a miniature vapor compression refrigeration cycle
Türkakar, Göker; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2016)
This study aims to optimize the dimensions and operating conditions of two main components of a miniature vapor compression refrigeration cycle (MVCRC), evaporator and condenser by using entropy generation minimization (EGM). In addition, some performance tests are conducted on a MVCRC which is constructed based on the EGM analysis as long as the manufacturing constraints permit. R134a is used as the coolant. Entropy generation rate in the evaporator of the MVCRC is investigated under the effects of exit va...
Temperature Dependence of the Entropy and the Heat Capacity Calculated from the Raman Frequency Shifts for Solid Benzene, Naphthalene and Anthracene
Yurtseven, Hasan Hamit; Ozdemir, Hilal (2022-1-01)
Temperature dependences of the free energy (F), entropy (S) and the heat capacity are calculated (P=0) for the organic compounds (solid benzene, naphthalene and anthracene) by using the quasiharmonic approximation. Contributions to those thermodynamic functions due to the Raman frequencies of lattice modes (solid benzene), librational modes (naphthalene), phonons and vibrons (anthracene) are taken into account in our calculations. We obtain that similar linear increase of F and nonlinear increase of S and, ...
Experimental investigation of surface roughness effects on the flow boiling of R134a in microchannels
Jafari, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Bayer, Özgür (2016-12-01)
This study experimentally investigates the effect of surface roughness on the hydrodynamic and thermal performance of microchannel evaporators. Three micro-evaporators of the same dimensions and different surface roughness have been fabricated by micro-WEDM. Each micro-evaporator consists of forty rectangular microchannels of 700 mu m height, 250 mu m width, and 19 mm length. A microscale vapor compression refrigeration cycle has been constructed to carry out the experiments. R134a is used as the refrigeran...
Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors
Kanbur, Yasin; Irimia-Vladu, Mihai; Glowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Guenther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; ERTEN ELA, ŞULE; Schwoediauer, Reinhard; Sitter, Helmut; Kucukyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar (2012-05-01)
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C-60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm(2)/Vs. Devices with pentacene showed a mobility of 0.16 cm(2)/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of similar to...
Citation Formats
G. Turkakar and H. T. Okutucu Özyurt, “Entropy generation analysis and dimensional optimization of an evaporator for use in a microscale refrigeration cycle,” INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, pp. 140–153, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52802.