Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
Date
2008-09-20
Author
AYDIN, AYHAN
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
0
downloads
Cite This
In this paper, the multisymplectic formulation of the CMKdV(complex modified Korteweg-de Vries equation) is derived. Based on the multisymplectic formulation, the eight-point multisymplectic Preissman scheme and a linear-nonlinear multisymplectic splitting scheme are developed. Both methods are compared numerically with respect to the conservation of local and global quantities of the CMKdV equation.
Subject Keywords
Complex modified Korteweg-de Vries equation
,
Multisymplectic integrator
,
Splitting
,
Solitons
URI
https://hdl.handle.net/11511/52927
Conference Name
International Conference on Numerical Analysis and Applied Mathematics
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential
Berkdemir, C; Berkdemir, A; Sever, Ramazan (American Physical Society (APS), 2005-08-01)
The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential are obtained by means of Nikiforov-Uvarov (NU) method. Certain bound states of the Schrodinger equation for the potential are calculated analytically and the wave functions are found in terms of the Jacobi polynomials. It is shown that the results are in good agreement with those obtained previously.
Quantum mechanical treatment of the problem of constraints in non-extensive formalism revisited
Bagci, G. B.; Arda, Altug; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2007-07-10)
The purity of Werner state in non-extensive formalism associated with two different constraints has been calculated in a previous paper by Bagci et al.(17) Two different results have been obtained corresponding to ordinary probability and escort probability. The former has been shown to result in negative values thereby leading authors to deduce the advantage of escort probabilities over ordinary probabilities. However, these results have only been for a limited interval of q values which lie between 0 and ...
Hybrid Surface Integral Equations for Optimal Analysis of Perfectly Conducting Bodies
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-07-24)
We consider hybrid formulations involving simultaneous applications of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the combined-field integral equation (CFIE) for the electromagnetic analysis of three-dimensional conductors with arbitrary geometries. By selecting EFIE, MFIE, and CFIE regions on a given object, and optimizing these regions in accordance with the simulation requirements, one can construct an optimal hybrid-field integral equation (HFIE) that p...
Periodic solutions and stability of differential equations with piecewise constant argument of generalized type
Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. AYDIN and B. Karasözen, “Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation,” Psalidi, Greece , 2008, vol. 1048, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52927.