A NUMERICAL AND EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF HYDRAULIC JUMPS ON ROUGH BEDS

2015-07-03
Velioglu, Deniz
Tokyay, Nuray
Dincer, Ali Ersin
Baffle blocks and sills are common accessory devices which are used in order to stabilize the location of a hydraulic jump and shorten the length of a stilling basin. On the other hand, strip roughness elements which cover the entire length of a basin may be an alternative. The objective of this study is to determine the effects of this type of roughness elements on the characteristics of hydraulic jumps such as conjugate depth ratio, jump length and energy dissipation. The study is carried out using experimental data and a computational fluid dynamics (CFD) model, namely Flow 3D. In the first phase of the study, the experimental data are compared with Flow 3D results in order to assess the sensitivity of the code. In the second phase, several investigations are made to determine whether strip roughness elements are effective on the characteristics of hydraulic jumps or not. The results show that strip roughness elements have positive effects on the characteristics of hydraulic jumps. The tail water depth reduction compared to classical jump is 18-20%. The length of the jump is reduced about by 20-25%. This type of roughness elements induce 2-3% more energy dissipation than that of a classical jump. Therefore, strip bed roughness elements may be considered as an alternative for baffle blocks and sills.
36th IAHR World Congress

Suggestions

Effects of different bed roughnesses on the characteristics of hydraulic jumps
Velioğlu, Deniz; Tokyay, Nuray; Department of Civil Engineering (2012)
In practice, baffle blocks and sills are commonly being used to stabilize the location of a hydraulic jump and shorten the length of a stilling basin. On the other hand, gravels, corrugations and rectangular prismatic roughnesses which cover the entire length of the basin or placed in a staggered manner may be an alternative. The objective of this study is to determine the effects of these roughness elements on the characteristics of hydraulic jumps such as conjugate depth, jump length and energy dissipatio...
Forced hydraulic jump on non-protruding rough beds
Tokyay, Nuray; Simsek, C. (2011-10-01)
Baffle blocks and sills are commonly used to stabilize the location of a hydraulic jump and shorten its length. However, corrugations or prismatic roughness elements may be effective alternatives to them. In the present study, experiments were performed to determine the effects of corrugations and prismatic roughness elements on fundamental characteristics of jump such as length, tailwater depth, and energy dissipation capacity. Corrugations were placed to cover the entire length of the basin. Prismatic rou...
The effect of prismatic ruoghness elements on hydraulic jump
Evcimen, Taylan Ulaş; Tokyay, Nuray; Department of Civil Engineering (2005)
The objective of this study is to determine the effect of different roughness types and arrangements on hydraulic jump characteristics in a rectangular channel. Three different types of roughness were used along experiments. All of them had rectangular prism shapes and that were placed normal to the flow direction. To avoid cavitation, height of roughness elements were arranged according to level of the channel inlet, so that the crests of roughness elements would not be protruding into the flow. The effect...
A study on the stress-strain behavior of railroad ballast materials by use of parallel gradation technique
Kaya, Mustafa; Özkan, M. Yener; Department of Civil Engineering (2004)
The shear strength, elastic moduli and plastic strain characteristics of scaled-down ballast materials are investigated by use of the parallel gradation technique. Uniformly graded ballast materials chosen for the investigation are limestone, basalt and steel-slag. Steel-slag is a byproduct material of Eregli Iron and Steel Works, which is suitable to meet the durability test requirements as well as the electrical resistivity and the waste contaminants regulatory level. Conventional triaxial testing at a st...
A Numerical Study on the Behaviour of Suction Bucket Foundations for Offshore Wind Turbines under Cyclic Loading
Yılmaz, Seyit Alp; Bakır, Bahadır Sadık; Taşan, Hacı Ercan; Department of Civil Engineering (2021-5-24)
Suction bucket foundations simply consist of a cylinder skirt and a top plate, usually made of steel and installed by the assist of suction are a relatively new and economically favorable solution for offshore wind turbines which are exposed to high lateral loads from winds and waves both of which have cyclic characteristic. Understanding the behaviour under the effect of complex cyclic load environment is essential to assess the design requirements of bucket foundations. Deformations and pore pressures may...
Citation Formats
D. Velioglu, N. Tokyay, and A. E. Dincer, “A NUMERICAL AND EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF HYDRAULIC JUMPS ON ROUGH BEDS,” presented at the 36th IAHR World Congress, Delft, Netherlands, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52946.