Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
SOUND SOURCE LOCALISATION PERFORMANCE OF OPEN SPHERICAL ACOUSTIC INTENSITY PROBES UNDER REVERBERANT CONDITIONS
Date
2014-04-25
Author
Hacıhabiboğlu, Hüseyin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
Open-spherical acoustic intensity probes are microphone arrays based on the Kirchhoff-Helmholtz integral and are used in the measurement of active acoustic intensity. The acoustic intensity measurements obtained by these arrays can be used to localise sound sources. Previously, the performance of these arrays in acoustic free field conditions were obtained using numerical simulations and it was shown that they provide better performance than other types of probes. This paper discusses the implementation of open spherical microphone arrays and their performance in reverberant enclosures.
Subject Keywords
Sound source localisation
,
Microphone arrays
,
Acoustic intensity
URI
https://hdl.handle.net/11511/53236
Conference Name
22nd IEEE Signal Processing and Communications Applications Conference (SIU)
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Theoretical Analysis of Open Spherical Microphone Arrays for Acoustic Intensity Measurements
Hacıhabiboğlu, Hüseyin (2014-02-01)
Acoustic intensity is a vectorial measure of acoustic energy flow through a given region of interest. Three-dimensional measurement of acoustic intensity requires special microphone array configurations. This paper provides a theoretical analysis of open spherical microphone arrays for the 3-D measurement of acoustic intensity. The calculations of the pressure and the particle velocity components of the sound field inside a closed volume are expressed using the Kirchhoff-Helmholtz integral equation. The con...
ACOUSTIC SOURCE SEPARATION USING RIGID SPHERICAL MICROPHONE ARRAYS VIA SPATIALLY WEIGHTED ORTHOGONAL MATCHING PURSUIT
Coteli, Mert Burkay; Hacıhabiboğlu, Hüseyin (2018-09-20)
Acoustic source separation refers to the extraction of individual source signals from microphone array recordings of multiple sources made in multipath environments such as rooms. The most straightforward approach to acoustic source separation involves spatial filtering via beamforming. While beamforming works well for a few sources and under low reverberation, its performance diminishes for a high number of sources and/or high reverberation. An informed acoustic source separation method based on the applic...
ACOUSTIC SOURCE SEPARATION USING THE SHORT-TIME QUATERNION FOURIER TRANSFORMS OF PARTICLE VELOCITY SIGNALS
Hacıhabiboğlu, Hüseyin (2016-03-25)
Quaternion Fourier transforms (QFT) provide a powerful tool for the analysis of signals obtained from vector probes. Acoustic particle velocity is one such signal which can be measured with specially designed microphone arrays. This paper presents a time-frequency source separation method based on the short-time quaternion Fourier transform of acoustic particle velocity signals and the k-plane clustering of the vector part of the resulting representation. Two example cases, one with a single and one with tw...
ON THE ACCURACY OF OPEN SPHERICAL MICROPHONE ARRAYS FOR MEASURING ACOUSTIC INTENSITY
Hacıhabiboğlu, Hüseyin (2013-10-23)
Acoustic intensity can be used for different purposes such as sound source localisation, source separation and spatial audio object coding. Three-dimensional measurement of the acoustic intensity requires the design of special microphone arrays. A theoretical analysis and numerical simulations of intensity measurements using open spherical microphone arrays are presented in this paper. The calculation of the acoustic intensity using signals from an open spherical microphone array is presented first. Error m...
Frequency tunable microstrip patch antenna using RF MEMS technology
Erdıl, Emre; Topallı, Kagan; Unlu, Mehmet; Aydın Çivi, Hatice Özlem; Akın, Tayfun (2007-04-01)
A novel reconfigurable microstrip patch antenna is presented that is monolithically integrated with RF microelectromechanical systems (MEMS) capacitors for tuning the resonant frequency. Reconfigurability of the operating frequency of the microstrip patch antenna is achieved by loading it with a coplanar waveguide (CPW) stub on which variable MEMS capacitors are placed periodically. MEMS capacitors are implemented with surface micromachining technology, where a 1-mu m thick aluminum structural layer is plac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Hacıhabiboğlu, “SOUND SOURCE LOCALISATION PERFORMANCE OF OPEN SPHERICAL ACOUSTIC INTENSITY PROBES UNDER REVERBERANT CONDITIONS,” presented at the 22nd IEEE Signal Processing and Communications Applications Conference (SIU), Karadeniz Teknik Univ, Trabzon, TURKEY, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53236.