ACOUSTIC SOURCE SEPARATION USING THE SHORT-TIME QUATERNION FOURIER TRANSFORMS OF PARTICLE VELOCITY SIGNALS

2016-03-25
Quaternion Fourier transforms (QFT) provide a powerful tool for the analysis of signals obtained from vector probes. Acoustic particle velocity is one such signal which can be measured with specially designed microphone arrays. This paper presents a time-frequency source separation method based on the short-time quaternion Fourier transform of acoustic particle velocity signals and the k-plane clustering of the vector part of the resulting representation. Two example cases, one with a single and one with two interfering sources are presented.

Suggestions

SOUND SOURCE LOCALISATION PERFORMANCE OF OPEN SPHERICAL ACOUSTIC INTENSITY PROBES UNDER REVERBERANT CONDITIONS
Hacıhabiboğlu, Hüseyin (2014-04-25)
Open-spherical acoustic intensity probes are microphone arrays based on the Kirchhoff-Helmholtz integral and are used in the measurement of active acoustic intensity. The acoustic intensity measurements obtained by these arrays can be used to localise sound sources. Previously, the performance of these arrays in acoustic free field conditions were obtained using numerical simulations and it was shown that they provide better performance than other types of probes. This paper discusses the implementation of ...
Spatial Filtering of MEG Signals for User-Specified Spherical Regions
Özkurt, Tolga Esat; Sun, Mingui; Jia, Wenyan; Sclabassi, Robert J. (2009-10-01)
We introduce a spatial filtering method in the spherical harmonics domain for constraining magnetoencephalographic (MEG) multichannel measurements to any user-specified spherical region of interest (ROI) inside the head. The method relies on a linear transformation of the signal space separation inner coefficients that represent the MEG signal generated by sources located inside the head. The spatial filtering is achieved effectively by constructing a spherical harmonics basis vector that is dependent on th...
ACOUSTIC CROSSTALK REDUCTION METHOD FOR CMUT ARRAYS
Bayram, Barış; Kupnik, Mario; Khuri-Yakub, Butrus T. (2006-01-01)
This paper reports on the finite element analysis (FEA) of crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. Finite element calculations using a commercial package (LS-DYNA) were performed for an immersed I-D CMUT array operating in the conventional and collapsed modes. LS-DYNA was used to model the crosstalk in CMUT arrays under specific voltage bias and excitation conditions, and such a modeling is well worth the effort for special-purpose CMUT arrays for ultrasound applications s...
Direction finding performance of antenna arrays on complex platforms using numerical electromagnetic simulation tools
Özeç, Mustafa Onur; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2011)
An important step for the design of direction finding systems is the performance evaluation using numeric electromagnetic simulation tools. In this thesis, a method is presented for both modeling and simulation in a numeric electromagnetic simulation tool FEKO. The method relies on the data generated by FEKO. The data is then processed by correlative interferometer algorithm. This process is implemented in a MATLAB environment. Different types of antenna arrays including dipole, monopole and discone antenna...
Direction finding with a circularly rotated antenna
Koc, AT; Sen, E; Tanik, Y (2000-06-09)
In this work, a new algorithm for multiple emitter direction finding by using a single antenna moving along a circular trajectory is proposed. The problem is formulated by taking the Doppler frequency shift, caused by the movement of the antenna. into account, and by assuming that the information, hidden in the incoming signals, does not change in the observation duration. The proposed direction finding algorithm is, therefore, based on single snapshot processing and also on the linear prediction method dev...
Citation Formats
H. Hacıhabiboğlu, “ACOUSTIC SOURCE SEPARATION USING THE SHORT-TIME QUATERNION FOURIER TRANSFORMS OF PARTICLE VELOCITY SIGNALS,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53628.