Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ACOUSTIC SOURCE SEPARATION USING THE SHORT-TIME QUATERNION FOURIER TRANSFORMS OF PARTICLE VELOCITY SIGNALS
Date
2016-03-25
Author
Hacıhabiboğlu, Hüseyin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
Quaternion Fourier transforms (QFT) provide a powerful tool for the analysis of signals obtained from vector probes. Acoustic particle velocity is one such signal which can be measured with specially designed microphone arrays. This paper presents a time-frequency source separation method based on the short-time quaternion Fourier transform of acoustic particle velocity signals and the k-plane clustering of the vector part of the resulting representation. Two example cases, one with a single and one with two interfering sources are presented.
Subject Keywords
Acoustic signal processing
,
Microphone arrays
,
Source separation
,
Quaternions
,
Vector clustering
URI
https://hdl.handle.net/11511/53628
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
SOUND SOURCE LOCALISATION PERFORMANCE OF OPEN SPHERICAL ACOUSTIC INTENSITY PROBES UNDER REVERBERANT CONDITIONS
Hacıhabiboğlu, Hüseyin (2014-04-25)
Open-spherical acoustic intensity probes are microphone arrays based on the Kirchhoff-Helmholtz integral and are used in the measurement of active acoustic intensity. The acoustic intensity measurements obtained by these arrays can be used to localise sound sources. Previously, the performance of these arrays in acoustic free field conditions were obtained using numerical simulations and it was shown that they provide better performance than other types of probes. This paper discusses the implementation of ...
Spatial Filtering of MEG Signals for User-Specified Spherical Regions
Özkurt, Tolga Esat; Sun, Mingui; Jia, Wenyan; Sclabassi, Robert J. (2009-10-01)
We introduce a spatial filtering method in the spherical harmonics domain for constraining magnetoencephalographic (MEG) multichannel measurements to any user-specified spherical region of interest (ROI) inside the head. The method relies on a linear transformation of the signal space separation inner coefficients that represent the MEG signal generated by sources located inside the head. The spatial filtering is achieved effectively by constructing a spherical harmonics basis vector that is dependent on th...
ACOUSTIC CROSSTALK REDUCTION METHOD FOR CMUT ARRAYS
Bayram, Barış; Kupnik, Mario; Khuri-Yakub, Butrus T. (2006-01-01)
This paper reports on the finite element analysis (FEA) of crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. Finite element calculations using a commercial package (LS-DYNA) were performed for an immersed I-D CMUT array operating in the conventional and collapsed modes. LS-DYNA was used to model the crosstalk in CMUT arrays under specific voltage bias and excitation conditions, and such a modeling is well worth the effort for special-purpose CMUT arrays for ultrasound applications s...
Direction finding performance of antenna arrays on complex platforms using numerical electromagnetic simulation tools
Özeç, Mustafa Onur; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2011)
An important step for the design of direction finding systems is the performance evaluation using numeric electromagnetic simulation tools. In this thesis, a method is presented for both modeling and simulation in a numeric electromagnetic simulation tool FEKO. The method relies on the data generated by FEKO. The data is then processed by correlative interferometer algorithm. This process is implemented in a MATLAB environment. Different types of antenna arrays including dipole, monopole and discone antenna...
Simulation of Directional Microphones in Digital Waveguide Mesh-Based Models of Room Acoustics
Hacıhabiboğlu, Hüseyin; Günel Kılıç, Banu (2010-02-01)
Digital waveguide mesh (DWM) models are time-domain numerical methods providing computationally simple solutions for wave propagation problems. They have been used in various acoustical modeling and audio synthesis applications including synthesis of musical instrument sounds and speech, and modeling of room acoustics. A successful model of room acoustics should be able to account for source and receiver directivity. Methods for the simulation of directional sources in DWM models were previously proposed. T...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Hacıhabiboğlu, “ACOUSTIC SOURCE SEPARATION USING THE SHORT-TIME QUATERNION FOURIER TRANSFORMS OF PARTICLE VELOCITY SIGNALS,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53628.