Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Basis reduction and the complexity of branch-and-bound
Date
2010-05-06
Author
Pataki, Gábor
Tural, Mustafa Kemal
Wong, Erick B.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
The classical branch-and-bound algorithm for the integer feasibility problem [GRAPHICS] has exponential worst case complexity. We prove that, it. is surprisingly efficient on reformulations of (01), in which the columns of the constraint, matrix are short and near orthogonal, i e, a reduced basis of the generated lattice. when the entries of A ale from {1, ,M} for a large enough M, branch-and-bound solves almost all reformulated instances at the root. node For all A matrices we prove an upper bound on the width of the reformulations along the last. unit vector Out results generalize the results of Furst, and kannan on the solvability of subset sum problems. also, we wove them via branch-and-bound, an algorithm traditionally considered inefficient from the theoretical point, of view We use two main tools. first, we find a bound on the size of the branch-and-bound tree based on the norms of the Gram-Schmidt vectors of the constiant. matrix. Second, building on the ideas of Furst and Kannan, we bound the number of integral matrices for which the shortest nonzero vectors of certain lattices ale long We explore practical aspects of these results We compute numerical values of M which guarantee that 90 and 99 percent of the reformulated problems solve at the root these turn out, to be surprisingly small when the problem size is model ate We also confirm with a computational study that random integer programs become easier, as the coefficients grow.
Subject Keywords
Programs
,
Algorithm
,
variables
,
Integer
,
Subset sum problems
URI
https://hdl.handle.net/11511/53256
Collections
Department of Industrial Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Broadband Multilevel Fast Multipole Algorithm Based on an Approximate Diagonalization of the Green's Function
Ergül, Özgür Salih (2015-07-01)
We present a broadband multilevel fast multipole algorithm (MLFMA) for fast and efficient solutions of three-dimensional multiscale problems involving large objects with dense discretizations. The proposed solver is based on the approximate diagonalization of the Green's function using scaled spherical and plane waves, leading to stable interaction computations for arbitrarily short distances in terms of wavelength. Despite contradictory requirements on the scaling factor that limit the accuracy of the diag...
Hierarchical Parallelization of the Multilevel Fast Multipole Algorithm (MLFMA)
Gurel, Levent; Ergül, Özgür Salih (2013-02-01)
Due to its O(NlogN) complexity, the multilevel fast multipole algorithm (MLFMA) is one of the most prized algorithms of computational electromagnetics and certain other disciplines. Various implementations of this algorithm have been used for rigorous solutions of large-scale scattering, radiation, and miscellaneous other electromagnetics problems involving 3-D objects with arbitrary geometries. Parallelization of MLFMA is crucial for solving real-life problems discretized with hundreds of millions of unkno...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Nested Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-24)
Nested iterative solutions using full and approximate forms of the multilevel fast multipole algorithm (MLFMA) are presented for efficient analysis of electromagnetic problems. The developed mechanism is based on preconditioning an iterative solution via another iterative solution, and this way, nesting multiple solutions as layers. The accuracy is systematically reduced from top to bottom by using the on-the-fly characteristics of MLFMA, as well as the iterative residual errors. As a demonstration, a three...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Pataki, M. K. Tural, and E. B. Wong, “Basis reduction and the complexity of branch-and-bound,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53256.