Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Noise reduction using anisotropic diffusion filter in inverse electrocardiology.
Date
2012-01-01
Author
Gavgani, Alireza Mazloumi
Serinağaoğlu Doğrusöz, Yeşim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
Filtering has been widely used in biomedical signal processing and image processing applications to cancel noise effects in signals recorded from the body. However, it is important to keep the desired characteristics of the physiological signal of interest while suppressing the noise characteristics. In this study, we used anisotropic diffusion filter (ADF) to cancel the noise on the body surface potentials measurements (BSPM) with the goal of improving the corresponding solutions of the inverse problem of electrocardiology (ECG). ADFs have been applied to image processing and they have the advantage of preserving sharp edges while rejecting the noise, thus we have chosen ADFs instead of more conventional filtering techniques. We used unfiltered and filtered BSPMs to estimate the epicardial potential distributions. We compared Tikhonov regularization results when the data included measurement noise and geometric errors. In both cases, filtering of BSPMs using the ADF improved our solutions.
Subject Keywords
Potentials
URI
https://hdl.handle.net/11511/53284
Journal
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Computational analysis of network activity and spatial reach of sharp wave-ripples
Canakci, Sadullah; Toy, Muhammed Faruk; Inci, Ahmet Fatih; Liu, Xin; Kuzum, Duygu (Public Library of Science (PLoS), 2017-9-15)
Network oscillations of different frequencies, durations and amplitudes are hypothesized to coordinate information processing and transfer across brain areas. Among these oscillations, hippocampal sharp wave-ripple complexes (SPW-Rs) are one of the most prominent. SPW-Rs occurring in the hippocampus are suggested to play essential roles in memory consolidation as well as information transfer to the neocortex. To-date, most of the knowledge about SPW-Rs comes from experimental studies averaging responses fro...
Measurement correction of a set of analog sun sensors via neural network
Sozen, Semsettin Numan; Gokce, Murat; Yavuzyilmaz, Cagatay; Gulmammadov, Farid; Söken, Halil Ersin (2021-06-23)
A Neural Network (NN) based method to improve the accuracy of a set of analog Sun sensors is presented. Analog Sun Sensors are commonly used on satellites due to their reduced cost, small size and low power consumption. However, especially in Earth imaging satellites, they are prone to the Earth albedo effects. Magnitude and direction of albedo change depending on the reflection characteristics of the Earth's surface, position and attitude of the satellite and position of the Sun. The albedo may deteriorate...
Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances
Ardeshiri, Tohid; Özkan, Emre; Orguner, Umut; Gustafsson, Fredrik (2015-12-01)
We present an adaptive smoother for linear state-space models with unknown process and measurement noise covariances. The proposed method utilizes the variational Bayes technique to perform approximate inference. The resulting smoother is computationally efficient, easy to implement, and can be applied to high dimensional linear systems. The performance of the algorithm is illustrated on a target tracking example.
Noise Estimation for Hyperspectral Imagery using Spectral Unmixing and Synthesis
DEMİRKESEN, CAN; Leloğlu, Uğur Murat (2014-09-25)
Most hyperspectral image (HSI) processing algorithms assume a signal to noise ratio model in their formulation which makes them dependent on accurate noise estimation. Many techniques have been proposed to estimate the noise. A very comprehensive comparative study on the subject is done by Gao et al. [1]. In a nut-shell, most techniques are based on the idea of calculating standard deviation from assumed-to-be homogenous regions in the image. Some of these algorithms work on a regular grid parameterized wit...
Broadband solutions of potential integral equations with NSPWMLFMA
Khalichi, Bahram; Ergül, Özgür Salih; Ertürk, Vakur B. (Institute of Electrical and Electronics Engineers (IEEE), 2019-06)
In this communication, a mixed-form multilevel fast multipole algorithm (MLFMA) is combined with the recently introduced potential integral equations (PIEs), also called as the A-phi system, to obtain an efficient and accurate broadband solver that can be used for the solution of electromagnetic scattering from perfectly conducting surfaces over a wide frequency range including low frequencies. The mixed-form MLFMA uses the nondirective stable planewave MLFMA (NSPWMLFMA) at low frequencies and the conventio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. M. Gavgani and Y. Serinağaoğlu Doğrusöz, “Noise reduction using anisotropic diffusion filter in inverse electrocardiology.,”
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
, pp. 5919–5922, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53284.