Broadband solutions of potential integral equations with NSPWMLFMA

2019-06
Khalichi, Bahram
Ergül, Özgür Salih
Ertürk, Vakur B.
In this communication, a mixed-form multilevel fast multipole algorithm (MLFMA) is combined with the recently introduced potential integral equations (PIEs), also called as the A-phi system, to obtain an efficient and accurate broadband solver that can be used for the solution of electromagnetic scattering from perfectly conducting surfaces over a wide frequency range including low frequencies. The mixed-form MLFMA uses the nondirective stable planewave MLFMA (NSPWMLFMA) at low frequencies and the conventional MLFMA at middle/ high frequencies. Various numerical examples are presented to assess the validity, efficiency, and accuracy of the developed solver.
IEEE Transactions on Antennas and Propagation

Suggestions

Broadband Analysis of Multiscale Electromagnetic Problems: Novel Incomplete-Leaf MLFMA for Potential Integral Equations
Khalichi, Bahram; Ergül, Özgür Salih; Takrimi, Manouchehr; Erturk, Vakur B. (2021-12-01)
Recently introduced incomplete tree structures for the magnetic-field integral equation are modified and used in conjunction with the mixed-form multilevel fast multipole algorithm (MLFMA) to employ a novel broadband incomplete-leaf MLFMA (IL-MLFMA) to the solution of potential integral equations (PIEs) for scattering/radiation from multiscale open and closed surfaces. This population-based algorithm deploys a nonuniform clustering that enables to use deep levels safely and, when necessary, without compromi...
Broadband Multilevel Fast Multipole Algorithm Based on an Approximate Diagonalization of the Green's Function
Ergül, Özgür Salih (2015-07-01)
We present a broadband multilevel fast multipole algorithm (MLFMA) for fast and efficient solutions of three-dimensional multiscale problems involving large objects with dense discretizations. The proposed solver is based on the approximate diagonalization of the Green's function using scaled spherical and plane waves, leading to stable interaction computations for arbitrarily short distances in terms of wavelength. Despite contradictory requirements on the scaling factor that limit the accuracy of the diag...
Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies
Gur, Ugur Meric; Ergül, Özgür Salih (2017-01-01)
We consider method-of-moments solutions of the recently developed potential integral equations (PIEs) for low-frequency electromagnetic problems involving perfectly conducting objects. The electric current density, electric charge density, and near-zone fields calculated by using PIEs are investigated at low frequencies, in contrast to those obtained via the conventional electric-field integral equation (EFIE). We show that: 1) the charge density can accurately be found by using EFIE despite the very poor a...
Parallel-MLFMA Solutions of Large-Scale Problems Involving Composite Objects
Ergül, Özgür Salih (2012-07-14)
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of large-scale electromagnetics problems involving composite objects with dielectric and metallic parts. Problems are formulated with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with MLFMA on distributed-memory architectures. Numerical examples involving canonical and complicated objects, such as optical metamaterials, are presented to...
A Novel Broadband Multilevel Fast Multipole Algorithm With Incomplete-Leaf Tree Structures for Multiscale Electromagnetic Problems
Takrimi, Manouchehr; Ergül, Özgür Salih; Erturk, Vakur B. (2016-06-01)
An efficient and versatile broadband multilevel fast multipole algorithm (MLFMA), which is capable of handling large multiscale electromagnetic problems with a wide dynamic range of mesh sizes, is presented. By invoking a novel concept of incomplete-leaf tree structures, where only the overcrowded boxes are divided into smaller ones for a given population threshold, versatility of using variable-sized boxes is achieved. Consequently, for geometries containing highly overmeshed local regions, the proposed me...
Citation Formats
B. Khalichi, Ö. S. Ergül, and V. B. Ertürk, “Broadband solutions of potential integral equations with NSPWMLFMA,” IEEE Transactions on Antennas and Propagation, pp. 4307–4312, 2019, Accessed: 00, 2020. [Online]. Available: https://doi.org/10.1109/TAP.2019.2905965.