Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical Implementation of Equivalence Principle Algorithm for Potentials
Date
2018-07-13
Author
Farshkaran, Ali
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
We present a novel implementation of the equivalence principle algorithm (EPA) applied to the recently developed potential integral equations (PIEs) for low-frequency problems involving perfect electric conductors. The equivalence integral equations are generalized and updated by including potentials, making it possible to use PIEs to formulate inner problems. The stability of the implementation is demonstrated on canonical objects.
Subject Keywords
Complex structures
URI
https://hdl.handle.net/11511/53518
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Implementation of the Equivalence Principle Algorithm for Potential Integral Equations
Farshkaran, Ali; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2019-05-01)
A novel implementation of the equivalence principle algorithm (EPA) employing potential integral equations (PIEs) is presented. EPA is generalized to be compatible with PIEs that are used to formulate inner problems inside equivalence surfaces. Based on the stability of PIEs, the resulting EPA-PIE implementation is suitable for low-frequency problems involving dense discretizations with respect to wavelength. Along with the formulation and a clear demonstration of the EPA-PIE mechanism, high accuracy, stabi...
Integrable boundary value problems for elliptic type Toda lattice in a disk
Guerses, Metin; Habibullin, Ismagil; Zheltukhın, Kostyantyn (AIP Publishing, 2007-10-01)
The concept of integrable boundary value problems for soliton equations on R and R+ is extended to regions enclosed by smooth curves. Classes of integrable boundary conditions in a disk for the Toda lattice and its reductions are found. (C) 2007 American Institute of Physics.
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Hybrid Surface Integral Equations for Optimal Analysis of Perfectly Conducting Bodies
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-07-24)
We consider hybrid formulations involving simultaneous applications of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the combined-field integral equation (CFIE) for the electromagnetic analysis of three-dimensional conductors with arbitrary geometries. By selecting EFIE, MFIE, and CFIE regions on a given object, and optimizing these regions in accordance with the simulation requirements, one can construct an optimal hybrid-field integral equation (HFIE) that p...
Group actions, non-Kähler complex manifolds and SKT structures
Poddar , Mainak; Singh Thakur , Ajay (Walter de Gruyter GmbH, 2018-2-2)
We give a construction of integrable complex structures on the total space of a smooth principal bundle over a complex manifold, with an even dimensional compact Lie group as structure group, under certain conditions. This generalizes the constructions of complex structure on compact Lie groups by Samelson and Wang, and on principal torus bundles by Calabi-Eckmann and others. It also yields large classes of new examples of non-Kähler compact complex manifolds. Moreover, under suitable restrictions on the ba...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Farshkaran and Ö. S. Ergül, “Numerical Implementation of Equivalence Principle Algorithm for Potentials,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53518.