Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sparse Recursive Cost Aggregation Towards O(1) Complexity Local Stereo Matching
Date
2015-05-19
Author
Gürbüz, Yeti Ziya
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
The complexity of the local stereo matching methods mainly increases with disparity search range and cost aggregation step. Joint elimination of the those complexity factors is a challenging task as a consequence of the contradicting nature of the methods attacking the reduction on the complexity factors. In this paper, that challenge is addressed and for the disparity search range reducing approaches, an efficient cost aggregation method is proposed by reformulating the filtering scheme of the recursive edge-aware filters which have been proved to be efficient approaches for cost aggregation. The proposed method is exploited by a hierarchical stereo matching approach. In that manner, fixed number of disparity candidates are tested for each pixel, regardless of the search space and the cost aggregation for each candidate is performed with constant complexity. The experimental results validate that the proposed approach has linear complexity with the image size and show that in practice it speeds up the recursive approaches almost four times with 0.01-0.96% decrease in matching accuracy. Compared to the state-of-the-art techniques, the proposed method is possibly the fastest approach with a competitive accuracy based on Middlebury benchmarking.
Subject Keywords
O(1) stereo matching
,
Predictive filtering
,
Hierarchical stereo matching
,
Recursive cost aggregation
URI
https://hdl.handle.net/11511/53548
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Sparse recursive filtering for O 1 stereo matching
Gürbüz, Yeti Ziya; Alatan, Abdullah Aydın (2015-09-30)
Recursive edge-aware filters have been proved to be one of the most efficient approaches for cost aggregation in stereo matching. However, disparity search space dependency, as a result of full search, is the bottle-neck of these local techniques that prevent further reduction in computation. In this paper, the cost aggregation and correspondence search problems are re-formulated to enable adaptive search for each pixel during recursive operations that provides significant reduction in computational complex...
Occlusion aware stereo matching with o(1) complexity /
Gürbüz, Yeti Ziya; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2014)
The problem of joint reduction of computational complexities of local stereo matching methods due to both cost aggregation step and correspondence search range is addressed and a novel hierarchical stereo matching algorithm is presented. The proposed approach exploits edge aware recursive volume filtering with a reduction on correspondence search range. The fastest state-of-the-art edge aware recursive filters are modified so that they become applicable to the methods to reduce the complexity in corresponde...
Edge-Aware Stereo Matching with O(1) Complexity
Cigla, Cevahir; Alatan, Abdullah Aydın (2012-01-26)
In this paper, a novel local stereo matching algorithm is introduced, providing precise disparity maps with low computational complexity. Following the common steps of local matching methods, namely cost calculation, aggregation, minimization and occlusion handling; the time consuming intensity dependent aggregation procedure is improved in terms of both speed and precision. For this purpose, a novel approach, denoted as permeability filtering (PF), is introduced, engaging computationally efficient two pass...
Segment-based stereo-matching via plane and angle sweeping
Cigla, Cevahir; Zabulis, Xenophon; Alatan, Abdullah Aydın (2007-01-01)
A novel approach for segment-based stereo matching problem is presented, based on a modified plane-sweeping strategy. The space is initially divided into planes that are located at different depth levels via plane sweeping by the help of region-wise planarity assumption for the scene. Over-segmented homogenous color regions are utilized for defining planar segment boundaries and plane equations are determined by angle sweeping at different planes. The robustness of depth map estimates is improved by warping...
Efficient Edge-Preserving Stereo Matching
Cigla, Cevahir; Alatan, Abdullah Aydın (2011-11-13)
A computationally efficient stereo matching algorithm is introduced providing high precision dense disparity maps via local aggregation approach. The proposed algorithm exploits a novel paradigm, namely separable successive weighted summation (SWS) among horizontal and vertical directions with constant operational complexity, providing effective connected 2D support regions based on local color similarities. The intensity adaptive aggregation enables crisp disparity maps which preserve object boundaries and...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Z. Gürbüz and A. A. Alatan, “Sparse Recursive Cost Aggregation Towards O(1) Complexity Local Stereo Matching,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53548.