Multilayer Iterative Solutions of Large-Scale Electromagnetic Problems Using MLFMA

2017-09-27
Ucuncu, Arif
Onol, Can
Ergül, Özgür Salih
We present multilayer solutions of large-scale electromagnetic problems using the multilevel fast multipole algorithm (MLFMA). With the conventional algebraic preconditioners based on the available near-field interactions, the cost of iterative solutions may exceed the linearithmic complexity, particularly for ill-conditioned systems, despite the efficient matrix-vector multiplications by MLFMA. We show that, using a multilayer approach employing approximate and full versions of MLFMA, the complexity can be reduced to the desired levels without deteriorating the accuracy. The proposed approach significantly accelerates iterative solutions also for well-conditioned system, while it does not require any extra memory as opposed to memory-hungry algebraic preconditioners. Numerical results of scattering problems involving both canonical and complicated structures are presented to demonstrate the efficiency of the multilayer strategy.

Suggestions

Nested Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-24)
Nested iterative solutions using full and approximate forms of the multilevel fast multipole algorithm (MLFMA) are presented for efficient analysis of electromagnetic problems. The developed mechanism is based on preconditioning an iterative solution via another iterative solution, and this way, nesting multiple solutions as layers. The accuracy is systematically reduced from top to bottom by using the on-the-fly characteristics of MLFMA, as well as the iterative residual errors. As a demonstration, a three...
Rigorous Solutions of Large-Scale Scattering Problems Discretized with Hundreds of Millions of Unknowns
Guerel, L.; Ergül, Özgür Salih (2009-09-18)
We present fast and accurate solutions of large-scale scattering problems using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). By employing a hierarchical partitioning strategy, MLFMA can be parallelized efficiently on distributed-memory architectures. This way, it becomes possible to solve very large problems discretized with hundreds of millions of unknowns. Effectiveness of the developed simulation environment is demonstrated on various scattering problems involving canonic...
Efficient Multilayer Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-01-01)
We consider efficient iterative solutions of large-scale electromagnetic problems involving metallic objects. For fast iterative solutions, a multilayer scheme using approximate forms of the multilevel fast multipole algorithm is developed. The approach is based on preconditioning each layer with iterative solutions at a lower layer, while the accuracy is changed from the top layer to the bottom layer. As opposed to the conventionally used algebraic preconditioners, the multilayer scheme: 1) does not requir...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Citation Formats
A. Ucuncu, C. Onol, and Ö. S. Ergül, “Multilayer Iterative Solutions of Large-Scale Electromagnetic Problems Using MLFMA,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53740.