Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical solution and experimental verification of shaped charge jet penetration
Date
2006-07-07
Author
Gozubuyuk, Serkan
Yıldırım, Raif Orhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
167
views
0
downloads
Cite This
In the scope of this study a one dimensional shape charge code was developed using analytical and semi-empirical approaches. The penetration part of the code is based on the hydrodynamic theory of penetration. The code is capable of modeling and visualizing of shaped charge liner collapse, jet formation and target penetration. Factors affecting the penetration were investigated by utilizing the developed code. Since the code is based on the solution of some analytical expressions rather than the solution of finite difference equations, the solution cost comes out to be enormously less than those of 2 or 3 dimensional hydrocodes. Some number of experiments was performed by using copper liners on steel target plates. The results were compared with the developed code and a good consistency was obtained.
Subject Keywords
Shaped charge
,
Penetration
,
Jet
URI
https://hdl.handle.net/11511/53773
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
TESTING, MODELLING AND SIMULATION OF LINEAR AND CIRCULAR LINEAR SHAPED CHARGES
Top, Mert; Dal, Hüsnü; Yıldırım, Raif Orhan; Department of Mechanical Engineering (2022-7-28)
In this thesis, testing, modelling, and simulation studies of the Linear Shaped Charge (LSC) and Circular Linear Shaped Charge (CLSC) are presented. CLSC is an alternative design to the Flexible Linear Shaped Charge (FLSC). It contains a copper liner and metal housing which are designed and produced by considering the target profile. Then, a molten explosive (PBX-110) is cured inside the copper and housing, so the CLSC production is completed. By following this production method, different LSC and CLSC conf...
Numerical simulation of lateral jets in supersonic crossflow of missiles using computational fluid dynamics
Dağlı, Efe Can; Aksel, M. Haluk.; Department of Mechanical Engineering (2019)
In this thesis, numerical simulation method for modelling lateral jet in supersonic crossflow is presented. Lateral jet control provides high maneuverability to the missile at difficult flow conditions. Besides, jet in a crossflow case has a highly complicated flow domain which should be examined using numerical or experimental methods. In this study, numerical methods are used. The thesis consists of two main sections. In the first section, a validation study is conducted for numerical simulation method us...
Investigation of InP and SiGe nanomaterials via molecular dynamics simulations
Nayir, Nadire; Erkoç, Şakir; Taşcı, Emre; Department of Physics (2018)
In this dissertation, InP and Si/Ge nanomaterials were investigated via classical molec- ular dynamics simulations. Structural and dynamical properties of InP nanorods and nanoparticles were examined under different conditions such as heating, cool- ing, strain etc. In the second part of this dissertation, a ReaxFF reactive force field development has been targeted to provide a more generalized description for the sim- ulation of the crystallization process of amorphous Ge on Si substrate. For this aim, the...
Thermal Characterization and Model Free Kinetic Application on a Tar Sand Sample
Kök, Mustafa Verşan (2015-01-01)
In the first part of this research, kinetic software was developed for the evaluation of kinetic parameters using nonisothermal thermogravimetry data. Different computational methods were used and applied to a set of experimental and simulated data distributed in the ICTAC (International Confederation for Thermal Analysis and Calorimetry) kinetics project. The reliability of the software was verified by comparing the kinetic results and it was observed that the results were in good agreement. In the second ...
Convergence Error and Higher-Order Sensitivity Estimations
Eyi, Sinan (2012-10-01)
The aim of this study is to improve the accuracy of the finite-difference sensitivities of differential equations solved by iterative methods. New methods are proposed to estimate the convergence error and higher-order sensitivities. The convergence error estimation method is based on the eigenvalue analysis of linear systems, but it can also be used for nonlinear systems. The higher-order sensitivities are calculated by differentiating the approximately constructed differential equation with respect to the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Gozubuyuk and R. O. Yıldırım, “Analytical solution and experimental verification of shaped charge jet penetration,” 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53773.