Energy Optimal Controller for Electric Vehicles on Partially Icy Roads with Heuristic Skidding Compensation

2015-10-16
In this study, a mathematical model is constructed for an electric vehicle. An energy optimal controller is designed for the gross motion model of the vehicle moving on a positive constant slope road with some icy parts. The energy optimal controller takes torque, speed and battery constraints into account. The loss of control during skidding period is compensated with an additional control command based on heuristics. The compensation is based on an enrichment of applied control input throughout the sections before and after skidding in balance within the controller constraints. The energy consumption of the optimal controller is compared with a standard cruise controller throughout several scenarios. These scenarios include constant slope roads with fixed amount of continuous icy part. The scenarios are carefully chosen that both controllers can accomplish to reach the end. It has been shown that energy optimal controller satisfies at least ten percent energy efficiency with respect to cruise controller under the tested scenarios.

Suggestions

Energy and Time Optimal Autopilot for Electric Vehicles Performing Ackerman Cornering
Ahiska, Kenan; Özgören, Mustafa Kemal; Leblebicioğlu, Mehmet Kemal (2022-03-01)
This paper studies energy and time optimality of electric vehicles during constant Ackerman steering along a quad-circle, and proposes an autopilot assimilating the optimal results. The energy and time optimal solutions satisfying the steering and battery limitations are generated and a Pareto-front analysis is carried out with multi-objective optimization using NSGA-II algorithm. In the autopilot design, the indicators for the energy and time optimality performances are merged in a vehicle status vector. A...
Efficiency Optimization of a Direct Torque Controlled Induction Motor used in Hybrid Electric Vehicles
Sergaki, Eleftheria S.; Moustaizis, Stavros D. (2011-09-10)
The main contribution of this paper is the application of Loss Minimization control algorithm of a three-phase squirrel-cage induction motor which is used in parallel with an internal combustion engine (ICE), in hybrid electric vehicles (HEY). During steady state operation of the electric motor, the electric motor's optimal motor flux profile minimizes the electric motor losses and maximizes the overall HEN efficiency, hybridization factor (HF). During steady state operation of the direct torque controlled ...
Analysis and Design of Passive and Active Interconnected Hydro Pneumatic Suspension Systems in Roll Plane
Sağlam, Ferhat; Ünlüsoy, Yavuz Samim (2015-05-19)
In this study, analysis and design of a half car model in roll plane with passive and active unconnected and interconnected Hydro-Pneumatic (HP) suspension systems are made. An interconnection configuration with a connection between the piston side oil volume and rod side oil volume of the right and left suspensions, respectively, is considered. The performance of the active unconnected HP and interconnected HP suspension systems are compared in terms of ride comfort and handling. Nonlinear mathematical mod...
Assessment of Impacts of Electric Vehicles on LV Distribution Networks in Turkey
TEMIZ, Armagan; Güven, Ali Nezih (2016-04-08)
This study proposes a methodology to analyze the impacts of Electric Vehicles (EVs) on Low Voltage (LV) distribution networks based on probabilistic models developed for the charging process of EVs. In addition to the battery charging characteristics, Gaussian distribution function for EV plug-in times and Weibull distribution function for daily travel times are utilized in simulations. Monte Carlo based load flow simulations are performed in order to evaluate the response of the LV networks to various EV a...
Vision-based Navigation and System Identification of Underwater Survey Vehicle
Kartal, Seda Karadeniz; Leblebicioğlu, Mehmet Kemal; Ege, Emre (2015-05-19)
In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle is obtained. The inertial navigation system and vision-based measurement systems are modelled. The magnetic compass, depth sensor and pitot tube are used in order to support vehicle's attitude, velocity and depth information. The state errors are estimated with error state estimation algorithm from the noisy measurement data. The navigational data of the vehicle can be obtained accurately using the extended Kalman filter...
Citation Formats
K. Ahiska, M. K. Özgören, and M. K. Leblebicioğlu, “Energy Optimal Controller for Electric Vehicles on Partially Icy Roads with Heuristic Skidding Compensation,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53810.