A Study of Crystallization in Plasma Modified Polypropylene

Mansuroglu, Dogan
Mecit, Giray
Uzun Kaymak, İlker Ümit
A capacitively coupled radio-frequency plasma discharge is used to improve the surface properties of Polypropylene. The changes in the surfaces are investigated for various plasma discharge parameters. After the plasma modification, the polypropylene material transforms into a para-crystalline form and shows the properties of the monoclinic crystals dominantly, observed using the X-ray diffraction measurements. The results indicate significant improvements in the crystallinity after the plasma exposure. These improvements are verified by the formations measured using a scanning electron microscope. Additionally, formations of new functional groups are observed using a Fourier transform infrared-attenuated total reflection spectrometer.


A mass spectrometric study on plasma reactions of styrene and methyl methacrylate
Özden (Orhan), Bilge; Hacaloğlu, Jale; Akovali, Güneri (1991-01-01)
High frequency gas discharge plasma reactions of styrene and methyl methacrylate at low pressure have been studied mass spectrometrically. When styrene was used as a monomer, the most important reaction was plasma state polymerization; some decomposition of styrene and the formation of a small amount of C2H4 were detected. Under the same conditions, methyl methacrylate was decomposed mainly to CO, CO2 and C2H4.
Studies on the effect of electrode type and substrate temperature on plasma polymerization of two model compounds: Acrylonitrile and hexamethyldisiloxane
Akovalı, Güneri; Dilsiz, Nursel (Wiley, 1990-4)
Polymers were prepared from saturated (HMDS) and unsaturated (AN) monomers in a radio frequency discharge (plasma). The effect of selected parameters such as electrode type (such as Cu, Zn, Ni, Al), reactor type, and substrate temperature (other parameters constant) on chemical structure and the rate of polymer deposition was examined by Fourier transform infrared (FTIR) spectroscopy. Differences in the nature of electrodes and reactor types were found to yield similar plasma products with similar rates of ...
Transition from homogeneous stationary to oscillating state in planar gas discharge-semiconductor system in nitrogen: Effect of fluid modelling approach
Rafatov, İsmail; Yeşil, Cihan (2018-08-01)
A laterally extended dc-driven system of planar gas discharge with a high-ohmic semiconductor electrode is considered. Numerical models are based on the fluid equations of plasma with drift-diffusion approximation for particle fluxes. The effect of different modelling approaches (with simpler and more detailed treatment of the electron transport and plasma chemical reactions) is analyzed. Bifurcation diagrams separating stable stationary states of the system from oscillatory states are derived and compared ...
A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
Mecit, Giray; Yedierler, Burak; Department of Physics (2022-2-11)
Gaseous plasmas are suitable for various applications in material science, including but not limited to thin film productions and coatings, tailoring the surface properties of polymers. This study aims to characterize a capacitively coupled plasma system utilized in material processing applications. The system utilizes a 13.56 MHz radio frequency source to produce gaseous plasmas. The correlation between the produced plasmas and the surface physical and surface chemical properties of polypropylene treated b...
Citation Formats
D. Mansuroglu, G. Mecit, and İ. Ü. Uzun Kaymak, “A Study of Crystallization in Plasma Modified Polypropylene,” 2019, vol. 18, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53949.